首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5650篇
  免费   1036篇
  国内免费   3042篇
  2024年   90篇
  2023年   339篇
  2022年   303篇
  2021年   394篇
  2020年   550篇
  2019年   627篇
  2018年   492篇
  2017年   479篇
  2016年   475篇
  2015年   420篇
  2014年   453篇
  2013年   479篇
  2012年   383篇
  2011年   375篇
  2010年   329篇
  2009年   357篇
  2008年   351篇
  2007年   397篇
  2006年   328篇
  2005年   310篇
  2004年   231篇
  2003年   201篇
  2002年   178篇
  2001年   180篇
  2000年   142篇
  1999年   115篇
  1998年   106篇
  1997年   84篇
  1996年   68篇
  1995年   77篇
  1994年   65篇
  1993年   37篇
  1992年   53篇
  1991年   43篇
  1990年   36篇
  1989年   28篇
  1988年   18篇
  1987年   12篇
  1986年   8篇
  1985年   12篇
  1984年   15篇
  1983年   6篇
  1982年   35篇
  1981年   8篇
  1980年   10篇
  1979年   5篇
  1978年   7篇
  1977年   4篇
  1975年   4篇
  1958年   3篇
排序方式: 共有9728条查询结果,搜索用时 218 毫秒
131.
132.
133.
Water vapour absorption is shown to occur in 22 species of Psocoptera inhabiting diverse environments and representing all major groups of this insect order. Evidently the faculty is a common feature of the whole order and it seems not to be related to specific environmental conditions. For the first time water vapour uptake could be demonstrated in fully winged and flying insects. The critical equilibrium humidities vary considerably among different species ranging from 58 to 85% r.h. Marked interspecific differences are also observed in water loss and uptake rates but no clear correlation with habitat or systematic group is recognizable. The uptake rates of Psocoptera are among the highest of all arthropods investigated so far. From weight recordings with a sensitive microbalance it could be seen that continuous operation of the uptake mechanism is restricted to limited periods of time of less than 1 hr regardless of the water status of the animals. Initiation and termination of the uptake process are abrupt and continuous uptake proceeds at a constant rate at a given relative humidity. Uptake rates are humidity-dependent decreasing with falling relative humidity whereas the adjustment of the equilibrium level of body water is independent of ambient humidity. Equilibrium is maintained by intermittent operation of the uptake mechanism within ca. 3% of body water mass. The uptake mechanism exhibits marked sensitivity to starvation in most members of the Psocomorpha. Some features of the uptake process of Psocoptera are in close agreement with those of Mallophaga reflecting the close relationship between the two groups.  相似文献   
134.
The incredible diversity of plant mating systems has fuelled research in evolutionary biology for over a century. Currently, there is broad concern about the impact of rapidly changing pollinator communities on plant populations. Very few studies, however, examine patterns and mechanisms associated with multiple paternity from cross‐pollen loads. Often, foraging pollinators collect a mixed pollen load that may result in the deposition of pollen from different sires to receptive stigmas. Coincident deposition of self‐ and cross‐pollen leads to interesting mating system dynamics and has been investigated in numerous species. But, mixed pollen loads often consist of a diversity of cross‐pollen and result in multiple sires of seeds within a fruit. In this issue of Molecular Ecology, Rhodes, Fant, and Skogen ( 2017 ) examine how pollinator identity and spatial isolation influence multiple paternity within fruits of a self‐incompatible evening primrose. The authors demonstrate that pollen pool diversity varies between two pollinator types, hawkmoths and diurnal solitary bees. Further, progeny from more isolated plants were less likely to have multiple sires regardless of the pollinator type. Moving forward, studies of mating system dynamics should consider the implications of multiple paternity and move beyond the self‐ and cross‐pollination paradigm. Rhodes et al. ( 2017 ) demonstrate the importance of understanding the roles that functionally diverse pollinators play in mating system dynamics.  相似文献   
135.
136.
137.
Aim We combine evidence from palaeoniche modelling studies of several tree species to estimate the extent of Central American forest during the Last Glacial Maximum (LGM). In particular, we ask whether the distributions of these species are likely to have changed since the LGM, and whether LGM distributions coincide with previously proposed Pleistocene refugia in this area. Location Central American wet and seasonally dry forests. Methods We developed ecological niche models using two simulations of Pleistocene climate and occurrence data for 15 Neotropical plant species. We focused on palaeodistribution models of three ‘focal’ tree species that occur in wet and seasonally dry Central American forests, where recent phylogeographic data suggest Pleistocene differentiation coincident with previously proposed refugia. We added predictions from six wet‐forest and six seasonally dry‐forest obligate plant species to gauge whether Pleistocene range shifts were specific to habitat type. Correlation analyses were performed between projected LGM and present distributions, LGM distributions and previously proposed refugia. We also asked whether modelled palaeodistributions were smaller than their current extents. Results According to our models, the ranges of the study species were not reduced during the LGM, and did not correlate with refugial models, regardless of habitat type. Relative range sizes between present and LGM distributions did not indicate significant range changes since the LGM. However, relative range sizes differed overall between the two palaeoclimate models. Main conclusions Many of the modelled palaeodistributions of study species were not restricted to refugia during the LGM, regardless of forest type. While constrained from higher elevations, most species found suitable habitat at coastal margins and on newly exposed land due to lowered sea levels during the LGM. These results offer no corroboration for Pleistocene climate change as a driver of genetic differentiation in the ‘focal’ species. We offer alternative explanations for genetic differentiation found in plant species in this area.  相似文献   
138.
Succession is a key ecological process that supports our understanding of community assembly and biotic interactions. Dispersal potential and dispersal strategies, such as wind- or animal-dispersal, have been assumed to be highly relevant for the success of plant species during succession. However, research yielded varying results on changes in dispersal modes between successional stages. Here, we test the hypotheses that (a) vascular plant species that use a number of dispersal modes dominate in early stages of succession while species specialized on one/few dispersal modes increase in abundance towards later stages of succession; (b) species well adapted to wind-dispersal (anemochory) will peak in abundance in early successional stages and (c) species well adapted to adhesive dispersal (epizoochory) will increase with proceeding succession. We test these hypotheses in four sites within agriculturally dominated landscapes in Germany. Agricultural use in these sites was abandoned 20–28 years ago, leaving them to secondary succession. Sites have been monitored for plant biodiversity ever since. We analyze changes in plant species richness and abundance, number of dispersal modes and two ranking indices for wind- and adhesive dispersal by applying generalized linear mixed-effect models. We used both abundance-weighted and unweighted dispersal traits in order to gain a comprehensive picture of successional developments. Hypothesis (a) was supported by unweighted but not abundance-weighted data. Anemochory showed no consistent changes across sites. In contrast, epizoochory (especially when not weighted by abundance) turned out to be an indicator of the transition from early to mid-successional stages. It increased for the first 9–16 years of succession but declined afterwards. Species richness showed an opposing pattern, while species abundance increased asymptotically. We suggest that plant-animal interactions play a key role in mediating these processes: By importing seeds of highly competitive plant species, animals are likely to promote the increasing abundance of a few dominant, highly epizoochorous species. These species outcompete weak competitors and species richness decreases. However, animals should as well promote the subsequent increase of species richness by disturbing the sites and creating small open patches. These patches are colonized by weaker competitors that are not necessarily dispersed by animals. The changes in the presence of epizoochorous species indicate the importance of plant traits and related plant–animal interactions in the succession of plant communities.  相似文献   
139.
140.
  1. Species distribution models often fail to predict observed patterns of species diversity, and this is because some species within a regional pool that are tolerant of conditions at a given location may nevertheless be absent from the local community. These missing species have been termed “dark diversity”. In the present study, we investigated which factors explain dark diversity among fish assemblages in Amazonian streams.
  2. We sampled 71 streams in areas with different types of land use within two river basins and estimated dark diversity from patterns of species co-occurrence, using Beals’ index, along environmental gradients. From this procedure, taxa are designated as dark diversity components when they are absent from a given stream, but often co-occur with the local species at other streams, indicating similar ecological requirements. We used generalised linear models both to determine whether environmental or landscape variables, connectivity, instream environmental heterogeneity or some combination of these factors explained dark diversity of fishes, and to evaluate whether ecomorphology is associated with the extent to which a species contributes to dark diversity and which specific traits contribute the most to explaining variation in dark diversity.
  3. Mean local diversity exceeded observed dark diversity. The magnitude of dark diversity was directly associated with the proportion of secondary forest in the immediate catchment and with the index of proximity to anthropogenic impact. Species that have high affinity for environments with higher current velocity, low swimming ability and that capture food mainly on the surface contributed more to dark diversity, which suggests that swimming ability, habitat preference and aspects related to diet are key predictors of the probability that a given species will be present at locations with suitable habitat.
  4. Our findings reinforce the idea that dark diversity results from interactions between species traits and environmental factors, including anthropogenic impacts. Understanding the interplay among environmental factors and species traits that contribute to dark diversity provides targets for improved ecosystem restoration and sustainability of native species assemblages.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号