首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42666篇
  免费   17344篇
  国内免费   3篇
  60013篇
  2023年   6篇
  2022年   20篇
  2021年   440篇
  2020年   2790篇
  2019年   4312篇
  2018年   4587篇
  2017年   4569篇
  2016年   4270篇
  2015年   4133篇
  2014年   4029篇
  2013年   4381篇
  2012年   3800篇
  2011年   3956篇
  2010年   3453篇
  2009年   2275篇
  2008年   2432篇
  2007年   1856篇
  2006年   1862篇
  2005年   1553篇
  2004年   1229篇
  2003年   1338篇
  2002年   1144篇
  2001年   853篇
  2000年   413篇
  1999年   247篇
  1997年   9篇
  1996年   9篇
  1995年   11篇
  1994年   7篇
  1993年   14篇
  1992年   13篇
  1991年   1篇
  1989年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
In the present study, we report on the X-ray crystallographic structure of a GH32 invertase mutant, (i.e., the Arabidopsis thaliana cell-wall invertase 1-E203Q, AtcwINV1-mutant) in complex with sucrose. This structure was solved to reveal the features of sugar binding in the catalytic pocket. However, as demonstrated by the X-ray structure the sugar binding and the catalytic pocket arrangement is significantly altered as compared with what was expected based on previous X-ray structures on GH-J clan enzymes. We performed a series of docking and molecular dynamics simulations on various derivatives of AtcwINV1 to reveal the reasons behind this modified sugar binding. Our results demonstrate that the E203Q mutation introduced into the catalytic pocket triggers conformational changes that alter the wild type substrate binding. In addition, this study also reveals the putative productive sucrose binding modus in the wild type enzyme.  相似文献   
152.
153.
Mating strategies are sets of decisions aimed at maximizing reproductive success. For male animals, the fundamental problem that these strategies address is attaining mating access to females in a manner that maximizes their chances of achieving paternity. For chimpanzees (Pan troglodytes), despite substantial interest in mating strategies, very little attention has been paid to the most fundamental problem that mating strategies need to solve: finding mates. Only a single model, Dunbar's general model of male mating strategies, exists to explain mate‐searching behaviour in chimpanzees. Under this model, males in most populations are regarded as pursuing a ‘roving’ strategy: searching for and sequestering fertile females who are essentially passive with respect to mate searching. The roving mating strategy is an assumption deeply embedded in the way chimpanzee behaviour is considered; it is implicit in the conventional model for chimpanzee social structure, which posits that male ranging functions both to monitor female reproductive state and to ward these females from other groups of males through collective territoriality: essentially, ranging as mating effort. This perspective is, however, increasingly at odds with observations of chimpanzee behaviour. Herein, I review the logic and evidence for the roving‐male mating strategy and propose a novel alternative, a theoretical framework in which roving is a strategy pursued by female chimpanzees in order to engage successfully in promiscuous mating. Males, unable to thwart this female strategy, instead maximise the number of reproductive opportunities encountered by focusing their behaviour on countering threats to health, fertility and reproductive career. Their prolonged grooming bouts are seen, in consequence, as functioning to mitigate the negative impacts of socially induced physiological stress. In this new framework, the roving‐male strategy becomes, at best, a ‘best of a bad job’ alternative for low‐ranking males when faced with high levels of competition for mating access. Male chimpanzees do not search for mates, but for one another, for food, and, at times, for rivals in other communities. To the extent that female promiscuity functions to counter infanticide risk, mate searching by female chimpanzees—and any associated costs—can be seen as an unavoidable consequence of male sexual coercion. This novel framework is a better fit to the available data than is the conventional account. This review highlights the desperate need for additional work in an area of chimpanzee biology that has been somewhat neglected, perhaps in part because assumptions of roving males have remained unquestioned for too long. It also highlights the need, across taxa, to revisit and revise theory, and to test old assumptions, when faced with contrary data.  相似文献   
154.
Aim Ixodes scapularis is the most important vector of human tick‐borne pathogens in the United States, which include the agents of Lyme disease, human babesiosis and human anaplasmosis, among others. The density of host‐seeking I. scapularis nymphs is an important component of human risk for acquiring Borrelia burgdorferi, the aetiological agent of Lyme disease. In this study we used climate and field sampling data to generate a predictive map of the density of host‐seeking I. scapularis nymphs that can be used by the public, physicians and public health agencies to assist with the diagnosis and reporting of disease, and to better target disease prevention and control efforts. Location Eastern United States of America. Methods We sampled host‐seeking I. scapularis nymphs in 304 locations uniformly distributed east of the 100th meridian between 2004 and 2006. Between May and September, 1000 m2 were drag sampled three to six times per site. We developed a zero‐inflated negative binomial model to predict the density of host‐seeking I. scapularis nymphs based on altitude, interpolated weather station and remotely sensed data. Results Variables that had the strongest relationship with nymphal density were altitude, monthly mean vapour pressure deficit and spatial autocorrelation. Forest fragmentation and soil texture were not predictive. The best‐fit model identified two main foci – the north‐east and upper Midwest – and predicted the presence and absence of I. scapularis nymphs with 82% accuracy, with 89% sensitivity and 82% specificity. Areas of concordance and discordance with previous studies were discussed. Areas with high predicted but low observed densities of host‐seeking nymphs were identified as potential expansion fronts. Main conclusions This model is unique in its extensive and unbiased field sampling effort, allowing for an accurate delineation of the density of host‐seeking I. scapularis nymphs, an important component of human risk of infection for B. burgdorferi and other I. scapularis‐borne pathogens.  相似文献   
155.
The idea that competition and aggression are central to an understanding of the origins of group‐living and sociality among human and nonhuman primates is the dominant theory in primatology today. Using this paradigm, researchers have focused their attention on competitive and aggressive behaviors, and have tended to overlook the importance of cooperative and affiliative behaviors. However, cooperative and affiliative behaviors are considerably more common than agonistic behaviors in all primate species. The current paradigm often fails to explain the context, function, and social tactics underlying affiliative and agonistic behavior. Here, we present data on a basic question of primate sociality: how much time do diurnal, group‐living primates spend in social behavior, and how much of this time is affiliative and agonistic? These data are derived from a survey of 81 studies, including 28 genera and 60 species. We find that group‐living prosimians, New World monkeys, Old World monkeys, and apes usually devote less than 10% of their activity budget to active social interactions. Further, rates of agonistic behaviors are extremely low, normally less than 1% of the activity budget. If the cost to the actors of affiliative behavior is low even if the rewards are low or extremely variable, we should expect affiliation and cooperation to be frequent. This is especially true under conditions in which individuals benefit from the collective environment of living in stable social groups. Am J Phys Anthropol 128:84–97, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   
156.
A central assumption of life history theory is that the evolution of the component traits is determined in part by trade-offs between these traits. Whereas the existence of such trade-offs has been well demonstrated, the relative importance of these remains unclear. In this paper we use optimality theory to test the hypothesis that the trade-off between present and future fecundity induced by the costs of continued growth is a sufficient explanation for the optimal age at first reproduction, alpha, and the optimal allocation to reproduction, G, in 38 populations of perch and Arctic char. This hypothesis is rejected for both traits and we conclude that this trade-off, by itself, is an insufficient explanation for the observed values of alpha and G. Similarly, a fitness function that assumes a mortality cost to reproduction but no growth cost cannot account for the observed values of alpha. In contrast, under the assumption that fitness is maximized, the observed life histories can be accounted for by the joint action of trade-offs between growth and reproductive allocation and between mortality and reproductive allocation (Individual Juvenile Mortality model). Although the ability of the growth/mortality model to fit the data does not prove that this is the mechanism driving the evolution of the optimal age at first reproduction and allocation to reproduction, the fit does demonstrate that the hypothesis is consistent with the data and hence cannot at this time be rejected. We also examine two simpler versions of this model, one in which adult mortality is a constant proportion of juvenile mortality [Proportional Juvenile Mortality (PJM) model] and one in which the proportionality is constant within but not necessarily between species [Specific Juvenile Mortality (SSJM) model]. We find that the PJM model is unacceptable but that the SSJM model produces fits suggesting that, within the two species studied, juvenile mortality is proportional to adult mortality but the value differs between the two species.  相似文献   
157.
Herein, a novel electrospun single‐ion conducting polymer electrolyte (SIPE) composed of nanoscale mixed poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) and lithium poly(4,4′‐diaminodiphenylsulfone, bis(4‐carbonyl benzene sulfonyl)imide) (LiPSI) is reported, which simultaneously overcomes the drawbacks of the polyolefin‐based separator (low porosity and poor electrolyte wettability and thermal dimensional stability) and the LiPF6 salt (poor thermal stability and moisture sensitivity). The electrospun nanofiber membrane (es‐PVPSI) has high porosity and appropriate mechanical strength. The fully aromatic polyamide backbone enables high thermal dimensional stability of es‐PVPSI membrane even at 300 °C, while the high polarity and high porosity ensures fast electrolyte wetting. Impregnation of the membrane with the ethylene carbonate (EC)/dimethyl carbonate (DMC) (v:v = 1:1) solvent mixture yields a SIPE offering wide electrochemical stability, good ionic conductivity, and high lithium‐ion transference number. Based on the above‐mentioned merits, Li/LiFePO4 cells using such a SIPE exhibit excellent rate capacity and outstanding electrochemical stability for 1000 cycles at least, indicating that such an electrolyte can replace the conventional liquid electrolyte–polyolefin combination in lithium ion batteries (LIBs). In addition, the long‐term stripping–plating cycling test coupled with scanning electron microscope (SEM) images of lithium foil clearly confirms that the es‐PVPSI membrane is capable of suppressing lithium dendrite growth, which is fundamental for its use in high‐energy Li metal batteries.  相似文献   
158.
Epidermal growth factor (EGF)–responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self‐renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF‐responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF‐generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain‐derived neurotrophic factor (BDNF) (5 ng in 0.5 μL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF‐responsive stem cell‐derived neurons possess limited intrinsic capability for long‐distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF‐responsive stem cell–derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 391–413, 1999  相似文献   
159.
Tuncbag N  Keskin O  Nussinov R  Gursoy A 《Proteins》2012,80(4):1239-1249
The similarity between folding and binding led us to posit the concept that the number of protein-protein interface motifs in nature is limited, and interacting protein pairs can use similar interface architectures repeatedly, even if their global folds completely vary. Thus, known protein-protein interface architectures can be used to model the complexes between two target proteins on the proteome scale, even if their global structures differ. This powerful concept is combined with a flexible refinement and global energy assessment tool. The accuracy of the method is highly dependent on the structural diversity of the interface architectures in the template dataset. Here, we validate this knowledge-based combinatorial method on the Docking Benchmark and show that it efficiently finds high-quality models for benchmark complexes and their binding regions even in the absence of template interfaces having sequence similarity to the targets. Compared to "classical" docking, it is computationally faster; as the number of target proteins increases, the difference becomes more dramatic. Further, it is able to distinguish binders from nonbinders. These features allow performing large-scale network modeling. The results on an independent target set (proteins in the p53 molecular interaction map) show that current method can be used to predict whether a given protein pair interacts. Overall, while constrained by the diversity of the template set, this approach efficiently produces high-quality models of protein-protein complexes. We expect that with the growing number of known interface architectures, this type of knowledge-based methods will be increasingly used by the broad proteomics community.  相似文献   
160.
Human–carnivore conflicts and retaliatory killings contribute to carnivore populations' declines around the world. Strategies to mitigate conflicts have been developed, but their efficacy is rarely assessed in a randomized case–control design. Further, the economic costs prevent the adoption and wide use of conflict mitigation strategies by pastoralists in rural Africa. We examined carnivore (African lion [Panthera leo], leopard [Panthera pardus], spotted hyena [Crocuta crocuta], jackal [Canis mesomelas], and cheetah [Acinonyx jubatus]) raids on fortified (n = 45, total 631 monthly visits) and unfortified (traditional, n = 45, total 521 monthly visits) livestock enclosures (“bomas”) in northern Tanzania. The study aimed to (a) assess the extent of retaliatory killings of major carnivore species due to livestock depredation, (b) describe the spatiotemporal characteristics of carnivore raids on livestock enclosures, (c) analyze whether spatial covariates influenced livestock depredation risk in livestock enclosures, and (d) examine the cost‐effectiveness of livestock enclosure fortification. Results suggest that (a) majority of boma raids by carnivores were caused by spotted hyenas (nearly 90% of all raids), but retaliatory killings mainly targeted lions, (b) carnivore raid attempts were rare at individual households (0.081 raid attempts/month in fortified enclosures and 0.102 raid attempts/month in unfortified enclosures), and (c) spotted hyena raid attempts increased in the wet season compared with the dry season, and owners of fortified bomas reported less hyena raid attempts than owners of unfortified bomas. Landscape and habitat variables tested, did not strongly drive the spatial patterns of spotted hyena raids in livestock bomas. Carnivore raids varied randomly both spatially (village to village) and temporally (year to year). The cost‐benefit analysis suggest that investing in boma fortification yielded positive net present values after two to three years. Thus, enclosure fortification is a cost‐effective strategy to promote coexistence of carnivores and humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号