首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21266篇
  免费   1170篇
  国内免费   732篇
  23168篇
  2023年   281篇
  2022年   375篇
  2021年   511篇
  2020年   481篇
  2019年   537篇
  2018年   647篇
  2017年   428篇
  2016年   444篇
  2015年   601篇
  2014年   933篇
  2013年   1292篇
  2012年   707篇
  2011年   951篇
  2010年   812篇
  2009年   1042篇
  2008年   1115篇
  2007年   1078篇
  2006年   1090篇
  2005年   977篇
  2004年   889篇
  2003年   736篇
  2002年   715篇
  2001年   502篇
  2000年   455篇
  1999年   464篇
  1998年   445篇
  1997年   386篇
  1996年   357篇
  1995年   364篇
  1994年   345篇
  1993年   340篇
  1992年   291篇
  1991年   261篇
  1990年   262篇
  1989年   233篇
  1988年   194篇
  1987年   173篇
  1986年   142篇
  1985年   146篇
  1984年   242篇
  1983年   159篇
  1982年   158篇
  1981年   141篇
  1980年   123篇
  1979年   91篇
  1978年   64篇
  1977年   50篇
  1976年   38篇
  1975年   24篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
BackgroundSchiff base metal complexes are considered promising chemotherapeutic agents due to their potential application in cancer therapy.MethodsThe current work sought to synthesize a brand-new Schiff base ligand obtained from 2-hydroxybenzohydrazide and (E)− 1-(2-(p-tolyl)hydrazono)propan-2-one with metal ions which included Pd(II) and Zn(II) ions. Elemental analyses, FT-IR, mass spectra, 1H NMR, UV-Vis spectrometer, and computational analysis characterized the compound's structure. In vitro, the breast cancer cell line (MCF-7) was tested for its sensitivity to Schiff base (HL) and its Pd(II) and Zn(II) complexes. The half-maximal inhibitory concentration IC50 of the compounds was determined and used to perform the comet assay, which was carried out to reveal the photo-induced DNA damaging ability of the compounds of individual cells. Moreover, the compounds' effects on antioxidant defense systems of enzymes in cells: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and oxidant Malondialdehyde (MDA) were examined in MCF-7 cells.ResultsThe Pd(II) complex displayed approximately the same IC50 as Cisplatin, while Zn(II) complex had better activity than Cisplatin with very low IC50, 1.40 μg/ml. Significant alterations in SOD, CAT, GPx, and MDA production were discovered, inducing oxidative stress, enlarging ROS production, and reducing the antioxidant amount. This change was approximately similar in most compounds. Consequently, it promoted apoptosis, particularly the Zn(II) complex, which demonstrated an improved impact because of its ability to influence the antioxidant defense systems of enzymes, mostly SOD and GPx, besides increasing MDA levels.ConclusionIt can be concluded that Zn(II) complex is the most effective anticancer drug since it induced a very similar genotoxic effect as Cisplatin and has a very low IC50 value.  相似文献   
63.
Summary Commercially obtained cystine binding protein (CBP), an osmotic shock protein ofEscherichia coli, was studied in an effort to determine its binding characteristics. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) analysis of commercially obtained CBP showed three protein bands. N-terminal amino acid microsequencing and subsequent computer search revealed that the sequence of one of these proteins (25-kDa) was nearly identical to histidine binding protein (HisJ) ofSalmonella typhimurium. Purification of CBP by HPLC yielded four protein peaks, of which one bound histidine exclusively. Binding was maximal at pH 5.0 to 6.0, at 4°C, did not require calcium or magnesium ions and was not inhibited by reduction of CBP disulfide bonds. Amino acids other than histidine or cystine did not bind to CBP. These data show that commercially available CBP is not a homogenous protein; it contains a histidine as well as a cystine binding component.  相似文献   
64.
Different CD95 (Fas/APO-1) isoforms and phosphory lated CD95 species were identified in human T and B cell lines. We had shown previously that the CD95 intracellular domain (IC), expressed as a glutathione S-transferase (GST) fusion protein in murine L929 fibroblasts, was phosphorylatedin vivo. GST-CD95IC was phosphorylatedin vitro by a kinase present in extracts from the human lymphocytic cell lines Jurkat and MP-1 and from murine L929 cells. Phosphoamino acid analysis indicated that phosphorylation occurred at multiple threonine residues and also at tyrosine (Tyr232 and Tyr291) and serine. Amino acids 191 to 275 of CD95 were sufficient for phosphorylation at threonine, tyrosine and serine and also mediated interaction with a 35 kDa cellular protein. Immuno-precipitation of CD95 and chemical cross-linking revealed CD95-associated proteins of approximately 35, 45 and 75 kDa. GST-CD95IC affinity chromatography detected binding of the 35 and 75 kDa protein species. The 75 kDa species may correspond to the CD95-associated proteins RIP or FAF1 and the 35 kDa protein may represent a TRADD analogue. These data indicate that several cellular proteins interact with CD95, possibly in a multi-protein complex, and that a kinase activity is associated with CD95 not onlyin vitro but alsoin vivo. Therefore, receptor phosphorylation may play a role in CD95 signal transduction. This work was in part supported by a grant from the Health Research Council of New Zealand (to JW).  相似文献   
65.
The cellular pathway of sugar uptake in developing cotyledons of Vicia faba L. and Phaseolus vulgaris L. seed was evaluated using a physiological approach. The cotyledon interface with the seed coat is characterised by a specialised dermal cell complex. In the case of Vicia faba cotyledons, the epidermal component of the dermal cell complex is composed of transfer cells. Sucrose is the major sugar presented to the outer surface of both cotyledons and it is taken up from the apoplasm unaltered. Estimated sucrose concentrations within the apparent free space of Vicia and Phaseolus cotyledons were 105 and 113 mM respectively. Rates of in-vitro uptake of [14C]sucrose by cotyledon segments or by whole cotyledons following physical removal or porter inactivation of the outer cells demonstrated that, for both Vicia and Phaseolus cotyledons, the dermal cell complexes are the most intense sites of sucrose uptake. Accumulation of [14C]sucrose in the storage parenchyma of whole cotyledons was directly affected by experimental manipulation of uptake by the outer cell layers and plasmolytic disruption of the interconnecting plasmodesmata. These findings indicated that sucrose accumulated by the dermal cell complexes is transported symplasmically to the storage parenchyma. Overall, it is concluded that the dermal cell complexes of the developing legume embryo, irrespective of the presence or absence of wall ingrowths, are the major sites for the uptake of sucrose released from the maternal tissues to the seed apoplasm. Thereafter, the accumulated sucrose is transported radially inward through the symplast to the storage parenchyma.Abbreviations AFS apparent free space - CF 5-(6)-carboxyfluorescein - CFDA 5-(6)-carboxyfluorescein diacetate - Mes 2-(N-morpholino)ethanesulfonic acid - PCMBS p-chloromercuribenzenesulfonic acid - SRG sulphorhodamine G The investigation was supported by funds from the Research Management Committee, The University of Newcastle and the Australian Research Council. One of us, R. McDonald, gratefully acknowledges the support of an Australian Postgraduate Research Award. We are grateful to Stella Savoury for preparing the photomicrographs.  相似文献   
66.
Electrophoretic patterns of seed storage proteins, the high-molecular-weight glutenins and gliadins, were studied in 468 plants of the common wheat cultivar Chinese Spring regenerated from callus culture of immature embryos, in 115 plants grown from seeds treated with nitrosoethylurea and in 260 control plants. From 5 to 21 single grains were analysed from each plant. In these three groups, the frequency of inherited mutations causing the loss of all proteins controlled by a locus (null-mutations, probably caused by a chromosomal deficiency) was 0.69%, 2.07%, and 0.05% per locus (the differences were statistically significant), respectively, while that of mutations causing the loss of a single protein band was 0.11%, 0.33%, and 0.05%, respectively. The loss of all of the gliadins controlled by Gli-B1 or GH-B2 (mutations were probably caused by a deletion of satellites of the corresponding chromosomes), was significantly higher than the loss of gliadins controlled by genomes A and D. Gene mutations altering the electrophoretic mobility of a single protein band in the pattern were found only in the second group of plants (0.44%). Therefore, chemical mutagenesis which produced not only more mutations than cultivation of immature wheat embryos in vitro, but also a higher ratio of mutations that altered DNA sequences, can be considered as an easier and comparatively more promising way for obtaining new improved variants of loci controlling biochemical characteristics in wheat. Somaclonal variation, on the other hand, was probably mainly caused by chromosomal abnormalities and could therefore hardly be considered as a useful tool in wheat breeding.  相似文献   
67.
Phosphorylation and dephosphorylation of ribosomal proteins have been suggested to participate in the regulation of protein synthesis in eukaryotic organisms. The present research focuses on the purification and partial characterization of a protein kinase from maize ribosomes that specifically phosphorylates acidic ribosomal proteins. Ribosomes purified from maize axes were used as the enzyme source. Purification of ribosomes was performed by centrifugation through a 0.5 M sucrose, 0.8 M KCl cushion. A protein kinase activity present in this fraction was released by extraction with 1.5 M KCl and further purified by diethylaminoethyl cellulose column chromatography. A peak containing protein kinase activity was eluted around 400 m M KCl. Analysis of this fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one band of 38 kDa molecular mass, which cross-reacted in a western blot with antibodies raised against proteins from the large ribosomal subunit. This enzyme specifically phosphorylates one of the acidic ribosomal proteins (P2). Its activity is inhibited by Ca2+ and Zn2+ and is activated by Mg2+, polylysine and spermine. The relevance of this protein kinase in reinitiating the protein synthesis process during germination is discussed.  相似文献   
68.
69.
The ability of aras protein to associate with proteins present in rat brain cytosolin vitro was investigated using chemical cross-linking agents and the125I-labelled v-H-ras protein. Two iodinated protein complexes with apparent molecular weights of 40 and 85 kDa were observed when a mixture of rat brain cytosol and [125I]ras was treated with the cross-linking agent disuccinimidyl suberate and subjected to SDS-PAGE. Formation of the [125I] 85 kDa complex was enhanced by a high concentration of EDTA while generation of the 40 kDa species was abolished by this treatment. Formation of the [125I] 85 kDa complex was inhibited by unlabelledras protein, GTP, GTPS, and GDP but not by ATPS and GMP.Chromatography of the cross-linked brain cytosol-[125I]ras mixture on DEAE cellulose partially resolved the [125I] 85 kDa complex from the [125I]ras protein. The [125I] 85 kDa complex (formed using ethyleneglycolbis (succinimidylsuccinate) as the cross-linking agent) could be immunoprecipitated using a rabbit anti-ras polyclonal antibody. Treatment of the immunoprecipitate with hydroxylamine to cleave the cross-link yielded [125I]-labelledras. A substantial enrichment of the proportion of the [125I] 85 kDa complex in the cross-linked extract was achieved by preparative SDS-PAGE. It is concluded that thein vitro chemical cross-linking approach employed here has detected tworas binding proteins in rat brain cytosol: a 65 kDa heat-sensitive and a 20 kDa heat-stable protein. The possibility that the 65 kDaras binding protein is aras regulatory orras effector protein which has not so far been characterised is briefly discussed.Abbreviations DSS disuccinimidyl suberate - EGS ethyleneglycolbis (succinimidylsuccinate) - GTPS guanosine 5-[-thio] triphosphate - ATPS adenosine 5-[-thio] triphosphate  相似文献   
70.
Summary The oxidation of cysteine (RSH) has been studied by using O2, ferricytochrome c (Cyt c) and nitro blue tetrazolium (NBT) as electron acceptors. The addition of 200M CuII to a solution of 2mM cysteine, pH 7.4, produces an absorbance with a peak at 260 nm and a shoulder at 300 nm. Generation of a cuprous bis-cysteine complex (RS-CuI-SR) is responsible for this absorbance. In the absence of O2 the absorbance is stable for long time while in the presence of air it vanishes slowly only when the cysteine excess is consumed. The neocuproine assay and the EPR analysis show that the metal remains reduced in the course of the oxidation of cysteine returning to the oxidised form at the end of reaction when all RSH has been oxidised to RSSR. Addition of CuII enhances the reduction rate of Cyt c and of NBT by cysteine also under anaerobiosis indicating the occurrence of a direct reduction of the acceptor by the complex. It is concluded that the cuprous bis-cysteine complex (RS-CuI-SR) is the catalytic species involved in the oxidation of cysteine. The novel finding of the stability of the complex together with the metal remaining in the reduced form during the oxidation suggest sulfur as the electron donor in the place of the metal ion.Abbreviations RSH cysteine - RS cysteine in the thiolate form - RS· thiyl radical of cysteine - RSSR cystine - Cyt c cytochrome c - SOD superoxide dismutase - NBT nitro blue tetrazolium - NBF nitro blue formazan - DTNB 5,5-dithiobis-2-nitrobenzoic acid - DTPA diethylenetriaminepentaacetic acid Dedicated to prof. A. Ballio ob the occasion of his 75th birthday.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号