首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7494篇
  免费   882篇
  国内免费   760篇
  2024年   35篇
  2023年   157篇
  2022年   178篇
  2021年   229篇
  2020年   297篇
  2019年   342篇
  2018年   373篇
  2017年   325篇
  2016年   304篇
  2015年   291篇
  2014年   381篇
  2013年   692篇
  2012年   251篇
  2011年   360篇
  2010年   282篇
  2009年   420篇
  2008年   398篇
  2007年   378篇
  2006年   378篇
  2005年   351篇
  2004年   315篇
  2003年   296篇
  2002年   270篇
  2001年   208篇
  2000年   142篇
  1999年   189篇
  1998年   167篇
  1997年   143篇
  1996年   120篇
  1995年   119篇
  1994年   104篇
  1993年   86篇
  1992年   86篇
  1991年   72篇
  1990年   52篇
  1989年   26篇
  1988年   40篇
  1987年   34篇
  1986年   31篇
  1985年   30篇
  1984年   46篇
  1983年   26篇
  1982年   45篇
  1981年   20篇
  1980年   13篇
  1979年   15篇
  1978年   6篇
  1977年   6篇
  1976年   2篇
  1973年   4篇
排序方式: 共有9136条查询结果,搜索用时 15 毫秒
121.
In the process of bioethanol production, more stable and active cellulase in high temperature condition is required. In this study, syringic acid was applied in cellulase hydrolysis system. At 70°C, TvEG3 activity increased 201.36%, CtBglA activity decreased 72.79% by syringic acid. With syringic acid assisting, TvEG3 thermostability was improved, CtBglA thermostability was reduced. Syringic acid scarcely affected CtCBH. In hydrolysis system with the cellulases containing TvEG3, CtCBH, and CtBglA, the reducing sugar yield improved by 28.37% with syringic acid assisting. With the molecular dynamic simulation in syringic acid system, the backbone root-mean-square deviation (RMSD) and the residue root-mean-square fluctuation (RMSF) of TvEG3, CtCBH reduced, while the RMSD and RMSF of CtBglA increased. The reduction in the number of secondary structures, especially α-helix, caused the structure of CtBglA in the presence of syringic acid to collapse at high temperature. More secondary structures in TvEG3 and more α-helix in CtCBH in the presence of syringic acid make them more stable at high temperatures. These means syringic acid can stabilize TvEG3 and CtCBH structure, destabilize CtBglA structure at high temperature. In summary, this study not only provides insight into cellulase hydrolysis at high temperature with syringic acid assisting but also demonstrates the promoting mechanism of syringic acid.  相似文献   
122.
Microtubule dynamics and organization are important for plant cell morphogenesis and development. The microtubule-based motor protein kinesins are mainly responsible for the transport of some organelles and vesicles, although several have also been shown to regulate microtubule organization. The ARMADILLO REPEAT KINESIN (ARK) family is a plant-specific motor protein subfamily that consists of three members (ARK1, ARK2, and ARK3) in Arabidopsis thaliana. ARK2 has been shown to participate in root epidermal cell morphogenesis. However, whether and how ARK2 associates with microtubules needs further elucidation. Here, we demonstrated that ARK2 co-localizes with microtubules and facilitates microtubule bundling in vitro and in vivo. Pharmacological assays and microtubule dynamics analyses indicated that ARK2 stabilizes cortical microtubules. Live-cell imaging revealed that ARK2 moves along cortical microtubules in a processive mode and localizes both at the plus-end and the sidewall of microtubules. ARK2 therefore tracks and stabilizes the growing plus-ends of microtubules, which facilitates the formation of parallel microtubule bundles.  相似文献   
123.
124.
Changes in vegetation structure and biogeography due to climate change feedback to alter climate by changing fluxes of energy, moisture, and momentum between land and atmosphere. While the current class of land process models used with climate models parameterizes these fluxes in detail, these models prescribe surface vegetation and leaf area from data sets. In this paper, we describe an approach in which ecological concepts from a global vegetation dynamics model are added to the land component of a climate model to grow plants interactively. The vegetation dynamics model is the Lund–Potsdam–Jena (LPJ) dynamic global vegetation model. The land model is the National Center for Atmospheric Research (NCAR) Land Surface Model (LSM). Vegetation is defined in terms of plant functional types. Each plant functional type is represented by an individual plant with the average biomass, crown area, height, and stem diameter (trees only) of its population, by the number of individuals in the population, and by the fractional cover in the grid cell. Three time‐scales (minutes, days, and years) govern the processes. Energy fluxes, the hydrologic cycle, and carbon assimilation, core processes in LSM, occur at a 20 min time step. Instantaneous net assimilated carbon is accumulated annually to update vegetation once a year. This is carried out with the addition of establishment, resource competition, growth, mortality, and fire parameterizations from LPJ. The leaf area index is updated daily based on prevailing environmental conditions, but the maximum value depends on the annual vegetation dynamics. The coupling approach is successful. The model simulates global biogeography, net primary production, and dynamics of tundra, boreal forest, northern hardwood forest, tropical rainforest, and savanna ecosystems, which are consistent with observations. This suggests that the model can be used with a climate model to study biogeophysical feedbacks in the climate system related to vegetation dynamics.  相似文献   
125.
Propulsive movements of the caudal oscillating flukes produce large forces that could induce equally large recoil forces at the cranial end of the animal, and, thus, affect stability. To examine these vertical oscillations, video analysis was used to measure the motions of the rostrum, pectoral flipper, caudal peduncle, and fluke tip for seven odontocete cetaceans: Delphinapterus leucas, Globicephala melaena, Lagenorhynchus obliquidens, Orcinus orca, Pseudorca crassidens, Stenella plagiodon , and Tursiops truncatus. Animals swam over a range of speeds of 1.4–7.30 m/sec. For each species, oscillatory frequency of the fluke tip increased linearly with swimming speed. Peak-to-peak amplitude at each body position remained constant with respect to swimming speed for all species. Mean peak-to-peak amplitude ranged from 0.02 to 0.06 body length at the rostrum and from 0.17 to 0.25 body length at the fluke tip. The phase relationships between the various body components remain constant with respect to swimming speed. Oscillations of the rostrum were nearly in phase with the fluke tip with phase differences out of—9.4°-33.0° of a cycle period of 360°. Pectoral flipper oscillations trailed fluke oscillations by 60.9°-123.4°. The lower range in amplitude at the rostrum compared to the fluke tip reflects increased resistance to vertical oscillation at the cranial end, which enhances the animal's stability. This resistance is likely due to both active and passive increased body stiffness, resistance on the flippers, phased movements of body components, and use of a lift-based propulsion. Collectively, these mechanisms stabilize the body of cetaceans during active swimming, which can reduce locomotor energy expenditure and reduce excessive motions of the head affecting sensory capabilities.  相似文献   
126.
The relationship between grass species richness and ecosystem stability was investigated in the Kruger National Park. A total of 135 489 individual grasses were identified from 189 sites spread across 19 485 km2 of savanna biome, making this one of the largest studies of its kind. At each site, grass percentage abundance and standing crop were measured at one year intervals to provide an index of ecosystem function. A severe drought that affected the region between 1991 and 1993 provided a convenient perturbation. At the height of the drought, mean species richness declined by 12.7% while standing crop declined by 38.1%, from 3199 to 1979 kg ha?1. Percentage grass abundance declined to 87.5% of its pre‐drought value. After the drought had passed species richness, standing crop and percentage abundance recovered to 92.1%, 113.8% and 92.8% of their pre‐perturbation values, respectively. Statistical analysis of these responses revealed that grass assemblages of low species richness were more resistant to drought than assemblages of high species richness. Species‐poor sites also showed better recovery from perturbation after the drought had passed. These findings suggest that ecosystem stability may be negatively related to grass species richness in South African savanna grasslands.  相似文献   
127.
Ectopic ion channels developed locally at the injury site after nerve damage by light ligation around common sciatic nerve of the rats. Different channel types have different processes of formation, accumulation and degeneration. During the first three days after injury, mechanically activated channels that are modulated by Ca++ channel activities first appeared. As the nerve fibers begin to be excited by TEA, a blocker of K+ channels, suggesting that the accumulation of K+ channels, the responsibility of mechanically activated channels was declining. Onset of K+ channels was from the 3rd postoperative day and lasted up to the fiftieth day. This time course of K+ channel development was closely related to allodynia and hyperalgesia of neuropathic animal behaviour. The results suggest that chronic contraction injury induces a dynamic change in the ectopic mechanically activated channels and K+ channels at the injury site of nerve and there is an interchange in the development time courses of the mechanic  相似文献   
128.
A simple model is used to illustrate the relationship between the dynamics measured by NMR relaxation methods and the local residual entropy of proteins. The expected local dynamic behavior of well-packed extended amino acid side chains are described by employing a one-dimensional vibrator that encapsulates both the spatial and temporal character of the motion. This model is then related to entropy and to the generalized order parameter of the popular "model-free" treatment often used in the analysis of NMR relaxation data. Simulations indicate that order parameters observed for the methyl symmetry axes in, for example, human ubiquitin correspond to significant local entropies. These observations have obvious significance for the issue of the physical basis of protein structure, dynamics, and stability.  相似文献   
129.
Bacillus circulans xylanase contains two histidines, one of which (His 156) is solvent exposed, whereas the other (His 149) is buried within its hydrophobic core. His 149 is involved in a network of hydrogen bonds with an internal water and Ser 130, as well as a potential weak aromatic-aromatic interaction with Tyr 105. These three residues, and their network of interactions with the bound water, are conserved in four homologous xylanases. To probe the structural role played by His 149, NMR spectroscopy was used to characterize the histidines in BCX. Complete assignments of the 1H, 13C, and 15N resonances and tautomeric forms of the imidazole rings were obtained from two-dimensional heteronuclear correlation experiments. An unusual spectroscopic feature of BCX is a peak near 12 ppm arising from the nitrogen bonded 1H epsilon 2 of His 149. Due to its solvent inaccessibility and hydrogen bonding to an internal water molecule, the exchange rate of this proton (4.0 x 10(-5) s-1 at pH*7.04 and 30 degrees C) is retarded by > 10(6)-fold relative to an exposed histidine. The pKa of His 156 is unperturbed at approximately 6.5, as measured from the pH dependence of the 15N- and 1H-NMR spectra of BCX. In contrast, His 149 has a pKa < 2.3, existing in the neutral N epsilon 2H tautomeric state under all conditions examined. BCX unfolds at low pH and 30 degrees C, and thus His 149 is never protonated significantly in the context of the native enzyme. The structural importance of this buried histidine is confirmed by the destablizing effect of substituting a phenylalanine or glutamine at position 149 in BCX.  相似文献   
130.
By considering the denatured state of a protein as an ensemble of conformations with varying numbers of sequence-specific interactions, the effects on stability, folding kinetics, and aggregation of perturbing these interactions can be predicted from changes in the molecular partition function. From general considerations, the following conclusions are drawn: (1) A perturbation that enhances a native interaction in denatured state conformations always increases the stability of the native state. (2) A perturbation that promotes a non-native interaction in the denatured state always decreases the stability of the native state. (3) A change in the denatured state ensemble can alter the kinetics of aggregation and folding. (4) The loss (or increase) in stability accompanying two mutations, each of which lowers (or raises) the free energy of the denatured state, will be less than the sum of the effects of the single mutations, except in cases where both mutations affect the same set of partially folded conformations. By modeling the denatured state as the ensemble of all non-native conformations of hydrophobic-polar (HP) chains configured on a square lattice, it can be shown that the stabilization obtained from enhancement of native interactions derives in large measure from the avoidance of non-native interactions in the D state. In addition, the kinetic effects of fixing single native contacts in the denatured state or imposing linear gradients in the HH contact probabilities are found, for some sequences, to significantly enhance the efficiency of folding by a simple hydrophobic zippering algorithm. Again, the dominant mechanism appears to be avoidance of non-native interactions. These results suggest stabilization of native interactions and imposition of gradients in the stability of local structure are two plausible mechanisms involving the denatured state that could play a role in the evolution of protein folding and stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号