首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12814篇
  免费   1458篇
  国内免费   1064篇
  15336篇
  2024年   59篇
  2023年   235篇
  2022年   247篇
  2021年   320篇
  2020年   528篇
  2019年   588篇
  2018年   674篇
  2017年   564篇
  2016年   567篇
  2015年   558篇
  2014年   651篇
  2013年   1037篇
  2012年   464篇
  2011年   588篇
  2010年   579篇
  2009年   683篇
  2008年   729篇
  2007年   713篇
  2006年   611篇
  2005年   541篇
  2004年   459篇
  2003年   425篇
  2002年   379篇
  2001年   273篇
  2000年   252篇
  1999年   204篇
  1998年   273篇
  1997年   206篇
  1996年   172篇
  1995年   178篇
  1994年   170篇
  1993年   137篇
  1992年   144篇
  1991年   124篇
  1990年   103篇
  1989年   123篇
  1988年   92篇
  1987年   82篇
  1986年   75篇
  1985年   73篇
  1984年   79篇
  1983年   52篇
  1982年   65篇
  1981年   47篇
  1980年   64篇
  1979年   44篇
  1978年   14篇
  1977年   20篇
  1976年   20篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
A mathematical model of cell population growth introduced by J. L. Lebowitz and S. I. Rubinow is analyzed. Individual cells are distinguished by age and cell cycle length. The cell cycle length is viewed as an inherited property determined at birth. The density of the population satisfies a first order linear partial differential equation with initial and boundary conditions. The boundary condition models the process of cell division of mother cells and the inheritance of cycle length by daughter cells. The mathematical analysis of the model employs the theory of operator semigroups and the spectral theory of linear operators. It is proved that the solutions exhibit the property of asynchronous exponential growth.  相似文献   
102.
Total bacterial numbers in different strata of lake water and in inlet and outlet streams have been recorded during a yearly cycle. A calculated mean cell volume of 0.342 µm2 has then been used to estimate bacterial biomass in the lake. Change of biomass during the year was substantial and the range was from about 0.1 g · m–3 to about 1.0–1.2 g · m–3. The seasonal development included a spring-early summer increase followed by a decrease to the minimum in July–August. Correlation between epi- and hypolimnion was high and in both strata two dominant autumn peaks in biomass appeared. With the exception of the last autumn peak the development of bacterial biomass was closely related to development of phytoplankton biomass and production.  相似文献   
103.
We present a method by which it is possible to describe the binding of fatty acids to phospholipid bilayers. Binding constants for oleic acid and a number of fatty acids used as spectroscopic probes are deduced from electrophoresis measurements. There is a large shift in pK value for the fatty acids on binding to the phospholipid bilayers, consistent with stronger binding of the uncharged form of the fatty acid. For dansylundecanoic acid, fluorescence titrations are consistent with the binding constants derived from the electrophoresis experiments. For 12-(9-anthroyloxy)stearic acid, fluorescence and electrophoresis data are inconsistent, and we attribute this to quenching of fluorescence at high molar ratios of 12-anthroylstearic acid to phospholipid in the bilayer.  相似文献   
104.
The rise time, of Signal IIf and the decay time of P-680+ have been measured kinetically as a function of pH by using EPR. The Photosystem II-enriched preparations which were used as samples were derived from spinach chloroplasts, and they evolved oxygen before Tris washing. The onset kinetics of Signal IIf are in agreement, within experimental error, with the fast component of the decay of an EPR signal attributable to P-680+. The signal IIf rise kinetics also show good agreement with published values of the pH dependence of the decay of P-680+ measured optically (Conjeaud, H. and Mathis, P. (1980) Biochim. Biophys. Acta 590, 353–359). These results are consistent with a model where the species Z (or D1) responsible for Signal IIf is the immediate electron donor to P-680+ in tris-washed Photosystem II fragments.  相似文献   
105.
The energy vs distance balance of cell suspensions (in the presence and in the absence of extracellular biopolymer solutions) is studied, not only in the light of the classical Derjaguin-Landau-Verwey-Over-beek (DLVO) theory (which considered just the electrostatic (EL) and Lifshitz-van der Waals (LW) interactions), but also by taking electron-acceptor/electron-donor, or Lewis acid-base (AB) and osmotic (OS) interactions into account. Since cell surfaces, as well as many biopolymers tend to have strong monopolar electron-donor properties, they are able to engage in a strong mutual AB repulsion when immersed in a polar liquid such as water. The effects of that repulsion have been observed earlier in the guise of hydration pressure. The AB repulsion is, at close range, typically one or two orders of magnitude stronger than the EL repulsion, but its rate of decay is much steeper. In most cases, AB interactions are quantitatively the dominant factor in cell stability (when repulsive) and in “hydrophobic interactions” (when attractive). OS interactions exerted by extracellularly dissolved biopolymers are weak, but their rate of decay is very gradual, so OS repulsions engendered by biopolymer solutions may be of importance in certain long-range interactions. OS interactions exerted by biopolymers attached to cells or particles (e.g., by glycocalix glycoproteins), are very short-ranged and usually are negligibly small in comparison with the other interaction forces, in aqueous media.  相似文献   
106.
T Noguti  N Go 《Proteins》1989,5(2):104-112
Conformational fluctuations in a globular protein, bovine pancreatic trypsin inhibitor, in the time range between picoseconds and nanoseconds are studied by a Monte Carlo simulation method. Multiple energy minima are derived from sampled conformations by minimizing their energy. They are distributed in clusters in the conformational space. A hierarchical structure is observed in the simulated dynamics. In the time range between 10(-14) and 10(-10) seconds dynamics is well represented by a superposition of vibrational motions within an energy well with transitions among minima within each cluster. Transitions among clusters take place in the time range of nanoseconds or longer.  相似文献   
107.
Refinement of distance geometry (DG) structures of EETI-II (Heitz et al.: Biochemistry 28:2392-2398, 1989), a member of the squash family trypsin inhibitor, have been carried out by restrained molecular dynamics (RMD) in water. The resulting models show better side chain apolar/polar surface ratio and estimated solvation free energy than structures refined "in vacuo." The consistent lower values of residual NMR constraint violations, apolar/polar surface ratio, and solvation free energy for one of these refined structures allowed prediction of the 3D folding and disulfide connectivity of EETI-II. Except for the few first residues for which no NMR constraints were available, this computer model fully agreed with X-ray structures of CMTI-I (Bode et al.: FEBS Lett. 242:285-292, 1989) and EETI-II complexed with trypsin that appeared after the RMD simulation was completed. Restrained molecular dynamics in water is thus proved to be highly valuable for refinement of DG structures. Also, the successful use of apolar/polar surface ratio and of solvation free energy reinforce the analysis of Novotny et al. (Proteins 4:19-30, 1988) and shows that these criteria are useful indicators of correct versus misfolded models.  相似文献   
108.
Growth and death rates of aboveground plant parts were measured in a mature forest and four different-aged deciduous broadleaf forests regeneratede after clear-cutting, with special reference to rates for woody parts (stems and branches) of different diameters (ø) in rerms of the pipe model theory (Shinozaki et al., 1964). The total biomass increment of woody parts of trees higher than 1.3 m varied within a range of 2.1-4.6 ton ha?1 yr?1, the increase beingdue largely to the growth of canopy trees exposed to direct sunlight. Biomass increments of small (ø<1 cm) and medium (1≤ø<5 cm) woody parts were negligibly small except in the youngest forest, and changes in aboveground woody biomass with forest age after clear-cutting mainly resulted from accumulation of large (5 cm<ø) woody parts of canopy trees. Biomass loss of trees due to death and grazing increased with forest age from 4.0 to 8.3 ton ha?1 yr?1. Recovery of leaf and small wood falls was observed at the early stage of regeneration, while large wood falls increased during regeneration. Flower and fruit fall was markedly higher in the mature forest than in the other four forest types. Mortality of woody parts became higher with forest age and was 20, 5.0 and 0.46% yr?1 for small, medium and large parts, respectively, at the mature stage. Aboveground net production of the forest was in therange 7.6-13.3 ton ha?1 yr?1 with the undergrowth vegetation lower than 1.3 m being 0.4-1.4 ton ha?1 yr?1. Production recovered rapidly at an early stage of regeneration and was highest in mature forest.  相似文献   
109.
A method is proposed that extracts a set of phrases, or “melodies”, from a behavioural sequence, using a technique for extracting and compressing chains based on Information Theory. These melodies are validated by reference to a statistical criterion. An application of this method to the analysis of the behavioural sequences of two groups of mice, the first observed during the day, the second during the night, is described. The advantages and the limitations of the method are discussed.  相似文献   
110.
Instantaneous rates of (soil + root) respiration were measured periodically during grain filling in sunflower crops that were i) irrigated at weekly intervals and ii) subjected to water stress for the last 25 days of the 40-day grain filling period. Daily (soil + root) respiration was calculated using instantaneous respiration rates, an empirically determined temperature response function, and diurnal records of soil temperature. Daily soil respiration was estimated using empirically determined functions linking soil respiration to soil temperature and water content. Between anthesis and maturity, daily root respiration of the irrigated crop dropped by about one half from ca. 1.8 g C m-2 d-1, exhibiting a strong association with daily crop gross photosynthesis. Water stress brought about a rapid decrease in root respiration, which fell to about 0.1 g C m-2 d-1 at maturity. Root respiration during grain filling was 46 and 30 g C m-2 for irrigated and stressed crops, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号