首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8434篇
  免费   541篇
  国内免费   480篇
  2024年   19篇
  2023年   90篇
  2022年   154篇
  2021年   151篇
  2020年   176篇
  2019年   204篇
  2018年   276篇
  2017年   184篇
  2016年   217篇
  2015年   238篇
  2014年   434篇
  2013年   522篇
  2012年   246篇
  2011年   412篇
  2010年   323篇
  2009年   463篇
  2008年   468篇
  2007年   487篇
  2006年   464篇
  2005年   404篇
  2004年   355篇
  2003年   296篇
  2002年   305篇
  2001年   204篇
  2000年   146篇
  1999年   186篇
  1998年   184篇
  1997年   142篇
  1996年   179篇
  1995年   149篇
  1994年   161篇
  1993年   97篇
  1992年   112篇
  1991年   103篇
  1990年   79篇
  1989年   87篇
  1988年   68篇
  1987年   72篇
  1986年   65篇
  1985年   66篇
  1984年   96篇
  1983年   72篇
  1982年   78篇
  1981年   61篇
  1980年   59篇
  1979年   33篇
  1978年   12篇
  1976年   15篇
  1975年   12篇
  1973年   10篇
排序方式: 共有9455条查询结果,搜索用时 797 毫秒
941.
Recent studies indicate that the incidence and persistence of damage from coral reef bleaching are often highest in areas of restricted water motion, and that resistance to and recovery from bleaching is increased by enhanced water motion. We examined the hypothesis that water motion increases the efflux of oxygen from coral tissue thereby reducing oxidative stress on the photosynthetic apparatus of endosymbiotic zooxanthellae. We experimentally exposed colonies of Montastrea annularis and Agaricia agaricites to manipulations of water flow, light intensity, and oxygen concentration in the field using a novel mini-flume. We measured photosynthetic efficiency using a pulse amplitude modulated fluorometer to test the short-term response of corals to our manipulations. Under normal oxygen concentrations, A. agaricites showed a significant 8% increase in photosynthetic efficiency from 0.238 (± 0.032) in still water to 0.256 (± 0.037) in 15 cm s−1 flow, while M. annularis exhibited no detectable change. Under high-ambient oxygen concentrations, the observed effect of flow on A. agaricites was reversed: photosynthetic efficiencies showed a significant 11% decrease from 0.236 (± 0.056) in still water to 0.211 (± 0.048) in 15 cm s−1 flow. These results support the hypothesis that water motion helps to remove oxygen from coral tissues during periods of maximal photosynthesis. Flow mitigation of oxidative stress may at least partially explain the increased incidence and severity of coral bleaching in low flow areas and observations of enhanced recovery in high-flow areas.  相似文献   
942.
In this study, we used an adoptive lymphocyte transfer experiment to evaluate the ability of the P64k recombinant protein to recruit T-helper activity and induce immunologic memory response to the polysaccharide moiety in a meningococcal serogroup C conjugate vaccine. Adoptive transfer of splenocytes from mice immunized with the glycoconjugate conferred antipolysaccharide immunologic memory to naive recipient mice. The observed anamnestic immune response was characterized by more rapid kinetics, isotype switching from IgM to IgG and higher antipolysaccharide antibody titers compared with those reached in groups transferred with splenocytes from plain polysaccharide or phosphate-immunized mice. The memory response generated was also long lasting. Sera from mice transferred with cells from conjugate-immunized mice were the only protective in the infant rat passive protection assay, and also showed higher bactericidal titers. We demonstrated that priming the mice immune system with the glycoconjugate using the P64k protein as carrier induced a memory response to the polysaccharide, promoting a switch of the T-cell-independent response to a T-cell dependent one.  相似文献   
943.
SCCmec in staphylococci: genes on the move   总被引:3,自引:0,他引:3  
Staphylococcal cassette chromosome (SCC) elements are, so far, the only vectors described for the mecA gene encoding methicillin resistance in staphylococci. SCCmec elements are classified according to the type of recombinase they carry and their general genetic composition. SCCmec types I-V have been described, and SCC elements lacking mecA have also been reported. In this review, we summarize the current knowledge about SCC structure and distribution, including genetic variants and rudiments of the elements. Its origin is still unknown, but one assumes that staphylococcal cassette chromosome is transferred between staphylococci, and mecA-positive coagulase-negative staphylococci may be a potential reservoir for these elements. Staphylococcal genomes seem to change continuously as genetic elements move in and out, but no mechanism of transfer has been found responsible for moving SCC elements between different staphylococcal species. Observations suggesting de novo production of methicillin-resistant staphylococci and horizontal gene transfer of SCCmec will be discussed.  相似文献   
944.
945.
946.
Plasma and erythrocyte solute properties were examined in freshwater (FW) acclimated juvenile Carcharhinus leucas following acute transfer to 75% seawater (SW), and 100% SW. Blood samples were taken at 0, 12 and 96 h following transfer to 75% SW and 24 and 72 h after transfer to 100% SW. A control group in FW was subjected to the same sampling regime. Upon transfer of C. leucas to 75% and 100% SW, plasma Na+, Cl, K+, Mg2+, Ca2+, urea and TMAO concentrations all increased significantly but disproportionately. Plasma Na+ and Cl increased immediately, followed by an increase in plasma urea. Erythrocyte urea and TMAO concentrations increased significantly following transfer to 75% and 100% SW; however, changes in erythrocyte inorganic ion concentrations were insignificant. Haematocrit, haemoglobin and mean cell haematocrit did not differ significantly after transfer to seawater; however, plasma water was slightly reduced after 24 and 72 h in 100% SW. Red blood cell (RBC) water content was elevated 24 h after transfer to 100% SW but returned to FW levels after 72 h. These results demonstrate that the transfer from 75% to 100% SW presents C. leucas with a greater osmoregulatory challenge than transfer from FW to 75% SW, despite the larger concentration gradient in the latter. In summary, C. leucas tolerate rapid and significant increases in salinity by rapidly increasing plasma osmolality to be hyperosmotic to the environment whilst maintaining a tight regulation of their intracellular fluid environment.  相似文献   
947.
Phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] plays a key role in the modulation of actin polymerization and vesicle trafficking. These processes seem to depend on the enrichment of PI(4,5)P(2) in plasma membrane domains. Here, we show that PI(4,5)P(2) does not form domains when in a fluid phosphatidylcholine matrix in the pH range of 4.8-8.4. This finding is at variance with the spontaneous segregation of PI(4,5)P(2) to domains as a mechanism for the compartmentalization of PI(4,5)P(2) in the plasma membrane. Water/bilayer partition of PI(4,5)P(2) is also shown to be dependent on the protonation state of the lipid.  相似文献   
948.
Dietary sphingomyelin (SM) is hydrolyzed by intestinal alkaline sphingomyelinase and neutral ceramidase to sphingosine, which is absorbed and converted to palmitic acid and acylated into chylomicron triglycerides (TGs). SM digestion is slow and is affected by luminal factors such as bile salt, cholesterol, and other lipids. In the gut, SM and its metabolites may influence TG hydrolysis, cholesterol absorption, lipoprotein formation, and mucosal growth. SM accounts for approximately 20% of the phospholipids in human plasma lipoproteins, of which two-thirds are in LDL and VLDL. It is secreted in chylomicrons and VLDL and transferred into HDL via the ABCA1 transporter. Plasma SM increases after periods of large lipid loads, during suckling, and in type II hypercholesterolemia, cholesterol-fed animals, and apolipoprotein E-deficient mice. SM is thus an important amphiphilic component when plasma lipoprotein pools expand in response to large lipid loads or metabolic abnormalities. It inhibits lipoprotein lipase and LCAT as well as the interaction of lipoproteins with receptors and counteracts LDL oxidation. The turnover of plasma SM is greater than can be accounted for by the turnover of LDL and HDL particles. Some SM must be degraded via receptor-mediated catabolism of chylomicron and VLDL remnants and by scavenger receptor class B type I receptor-mediated transfer into cells.  相似文献   
949.
We have identified a series of potent cholesteryl ester transfer protein (CETP) inhibitors, one member of which, torcetrapib, is undergoing phase 3 clinical trials. In this report, we demonstrate that these inhibitors bind specifically to CETP with 1:1 stoichiometry and block both neutral lipid and phospholipid (PL) transfer activities. CETP preincubated with inhibitor subsequently bound both cholesteryl ester and PL normally; however, binding of triglyceride (TG) appeared partially reduced. Inhibition by torcetrapib could be reversed by titration with both native and synthetic lipid substrates, especially TG-rich substrates, and occurred to an equal extent after long or short preincubations. The reversal of TG transfer inhibition using substrates containing TG as the only neutral lipid was noncompetitive, suggesting that the effect on TG binding was indirect. Analysis of the CETP distribution in plasma demonstrated increased binding to HDL in the presence of inhibitor. Furthermore, the degree to which plasma CETP shifted from a free to an HDL-bound state was tightly correlated to the percentage inhibition of CE transfer activity. The finding by surface plasmon resonance that torcetrapib increases the affinity of CETP for HDL by approximately 5-fold likely represents a shift to a binding state that is nonpermissive for lipid transfer. In summary, these data are consistent with a mechanism whereby this series of inhibitors block all of the major lipid transfer functions of plasma CETP by inducing a nonproductive complex between the transfer protein and HDL.  相似文献   
950.
The depolarizing membrane ionic current I h (also known as I f, “f” for funny), encoded by the hyperpolarization-activated cyclic-nucleotide-modulated (HCN1-4) channel gene family, was first discovered in the heart over 25 years ago. Later, I h was also found in neurons, retina, and taste buds. HCN channels structurally resemble voltage-gated K+ (Kv) channels but the molecular features underlying their opposite gating behaviors (activation by hyperpolarization rather than depolarization) and non-selective permeation profiles (≥25 times less selective for K+ than Kv channels) remain largely unknown. Although I h has been functionally linked to biological processes from the autonomous beating of the heart to pain transmission, the underlying mechanistic actions remain largely inferential and, indeed, somewhat controversial due to the slow kinetics and negative operating voltage range relative to those of the bioelectrical events involved (e.g., cardiac pacing). This article reviews the current state of our knowledge in the structure-function properties of HCN channels in the context of their physiological functions and potential HCN-based therapies via bioengineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号