首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   703篇
  免费   90篇
  国内免费   60篇
  853篇
  2024年   1篇
  2023年   7篇
  2022年   8篇
  2021年   14篇
  2020年   17篇
  2019年   26篇
  2018年   27篇
  2017年   21篇
  2016年   27篇
  2015年   38篇
  2014年   61篇
  2013年   80篇
  2012年   31篇
  2011年   61篇
  2010年   24篇
  2009年   38篇
  2008年   34篇
  2007年   39篇
  2006年   27篇
  2005年   29篇
  2004年   21篇
  2003年   27篇
  2002年   22篇
  2001年   11篇
  2000年   16篇
  1999年   17篇
  1998年   5篇
  1997年   7篇
  1996年   10篇
  1995年   10篇
  1994年   10篇
  1993年   7篇
  1992年   8篇
  1991年   1篇
  1990年   5篇
  1989年   5篇
  1988年   8篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有853条查询结果,搜索用时 15 毫秒
41.
Novel naphthalimide–poly(amidoamine) dendrimer fluorescent dyes were synthesized, and their structures were identified and confirmed using different characterization methods such as Fourier transform infrared, 1H NMR, 13C NMR, differential scanning calorimetry, elemental analysis and UV–vis spectroscopy. The spectrophotometric studies demonstrated absorption maxima (λmax) and extinction coefficient (εmax) values in the ranges of 429–438 nm and 25,635–88,618 L/mol/cm, respectively. The dyeing, fastness and antimicrobial properties of dyed wool fibers were examined. Colorimetric measurements demonstrated a greenish‐yellow hue with remarkable fluorescence intensity on dyed wool. Although the fastness properties of naphthalimide dye on wool fibers were poor/moderate, color fastness was appreciably improved through modification of the dye using dendrimers. The results revealed that the newly synthesized dyes are potent antimicrobial agents on wool fibers. Overall, it was deduced that poly(amidoamine) (PAMAM) dendrimers could be exploited as a promising tool in tailoring the different properties of naphthalimide dyes, being suitable for dyeing and antimicrobial finishing agents for wool fibers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
42.
Interaction of the food additive tartrazine with double-stranded DNA was studied by spectroscopic and calorimetric techniques. Absorbance studies revealed that tartrazine exhibited hypochromism in the presence of DNA without any bathochromic effects. Minor groove displacement assay of DAPI and Hoechst 33258 suggested that tartrazine binds in the minor groove of DNA. The complexation was predominantly entropy driven with a smaller but favorable enthalpic contribution to the standard molar Gibbs energy. The equilibrium constant was evaluated to be (3.68?±?.08)?×?104?M?1 at 298.15?K. The negative standard molar heat capacity value along with an enthalpy–entropy compensation phenomenon proposed the involvement of dominant hydrophobic forces in the binding process. Tartrazine enhanced the thermal stability of DNA by 7.53?K under saturation conditions.  相似文献   
43.
Data‐driven materials discovery has become increasingly important in identifying materials that exhibit specific, desirable properties from a vast chemical search space. Synergic prediction and experimental validation are needed to accelerate scientific advances related to critical societal applications. A design‐to‐device study that uses high‐throughput screens with algorithmic encodings of structure–property relationships is reported to identify new materials with panchromatic optical absorption, whose photovoltaic device applications are then experimentally verified. The data‐mining methods source 9431 dye candidates, which are auto‐generated from the literature using a custom text‐mining tool. These candidates are sifted via a data‐mining workflow that is tailored to identify optimal combinations of organic dyes that have complementary optical absorption properties such that they can harvest all available sunlight when acting as co‐sensitizers for dye‐sensitized solar cells (DSSCs). Six promising dye combinations are shortlisted for device testing, whereupon one dye combination yields co‐sensitized DSSCs with power conversion efficiencies comparable to those of the high‐performance, organometallic dye, N719. These results demonstrate how data‐driven molecular engineering can accelerate materials discovery for panchromatic photovoltaic or other applications.  相似文献   
44.
45.
46.
Next‐generation organic solar cells such as dye‐sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) are studied at the National Institute of Advanced Industrial Science and Technology (AIST), and their materials, electronic properties, and fabrication processes are investigated. To enhance the performance of DSSCs, the basic structure of an electron donor, π‐electron linker, and electron acceptor, i.e., D–π–A, is suggested. In addition, special organic dyes containing coumarin, carbazole, and triphenylamine electron donor groups are synthesized to find an effective dye structure that avoids charge recombination at electrode surfaces. Meanwhile, PSCs are manufactured using both a coating method and a laser deposition technique. The results of interfacial studies demonstrate that the level of the conduction band edge (CBE) of a compact TiO2 layer is shifted after TiCl4 treatment, which strongly affects the solar cell performance. Furthermore, a special laser deposition system is developed for the fabrication of the perovskite layers of PSCs, which facilitates the control over the deposition rate of methyl ammonium iodide used as their precursor.  相似文献   
47.
In the present study a new luminescent dye 3‐N‐(2‐pyrrolidinylacetamido)benzanthrone (AZR) was synthesized. Spectroscopic measurements of the novel benzanthrone 3‐aminoderivative were performed in seven organic solvents showing strong fluorescence. The capability of the prepared dye for visualization has been tested on flax, red clover and alfalfa to determinate the embryo in plant callus tissue cultures. Callus cells were stained with AZR and further analysed utilizing confocal laser scanning fluorescence microscopy. Performed experiments show high visualization effectiveness of newly synthesized fluorescent dye AZR that is efficient in fast and relatively inexpensive diagnostics of callus embryos that are problematic due to in vitro culture specificity.  相似文献   
48.
49.

Background

Injection localized amyloidosis is one of the most prevalent disorders in type II diabetes mellitus (TIIDM) patients relying on insulin injections. Previous studies have reported that nanoparticles can play a role in the amyloidogenic process of proteins. Hence, the present study deals with the effect of zinc oxide nanoparticles (ZnONP) on the amyloidogenicity and cytotoxicity of insulin.

Methods

ZnONP is synthesised and characterized using XRD, Zeta Sizer, UV-Visible spectroscope and TEM. The characterization is followed by ZnONP interaction with insulin, which is studied employing fluorescence spectroscopes, isothermal titration calorimetry and molecular dynamics simulations. The interaction leads insulin conformational rearrangement into amyloid-like fibril, which is studied using thioflavin T dye binding assay, circular dichroism spectroscopy and TEM, followed by cytotoxicity propensity using Alamar Blue dye reduction assay.

Results

Insulin has very weak interaction with ZnONP interface. Insulin at studied concentration forms amorphous aggregates at physiological pH, whereas in presence of ZnONP interface amyloid-like fibrils are formed. While the amyloid-like fibrils are cytotoxic to MIN6 and THP-1 cell lines, insulin and ZnONP individual solutions and their fresh mixtures enhance the cells proliferation.

Conclusions

The presence of ZnONP interface enhances insulin fibrillation at physiological pH by providing a favourable template for the nucleation and growth of insulin amyloids.

General significance

The studied protein-nanoparticle system from protein conformational dynamics point of view throws caution over nanoparticle use in biological applications, especially in vivo applications, considering the amyloidosis a very slow but non-curable degenerative disease.  相似文献   
50.
徐圣东  周金洋  王丽  朱孟娟 《菌物学报》2021,40(6):1525-1537
利用漆酶(laccase)处理染料废水是近年来研究的热点.本研究以猴头菌Hericium erinaceus和金针菇Flammulina filiformis的发酵液为试验材料,通过硫酸铵沉淀、离子交换层析和超滤等方法,对发酵液中的漆酶进行了初步的分离纯化,然后分别研究了两种初提纯漆酶及其与小分子介体组成的漆酶介体系统...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号