首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   0篇
  国内免费   1篇
  203篇
  2023年   1篇
  2021年   3篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2014年   11篇
  2013年   15篇
  2012年   3篇
  2011年   20篇
  2010年   28篇
  2009年   36篇
  2008年   26篇
  2007年   14篇
  2006年   9篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1993年   2篇
  1987年   3篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
91.
92.
The essential minichromosome maintenance (Mcm) proteins Mcm2 through Mcm7 likely comprise the replicative helicase in eukaryotes. In addition to Mcm2-7, other subcomplexes, including one comprising Mcm4, Mcm6, and Mcm7, unwind DNA. Using Mcm4/6/7 as a tool, we reveal a role for nucleotide binding by Saccharomyces cerevisiae Mcm2 in modulating DNA binding by Mcm complexes. Previous studies have shown that Mcm2 inhibits DNA unwinding by Mcm4/6/7. Here, we show that interaction of Mcm2 and Mcm4/6/7 is not sufficient for inhibition; rather, Mcm2 requires nucleotides for its regulatory role. An Mcm2 mutant that is defective for ATP hydrolysis (K549A), as well as ATP analogues, was used to show that ADP binding by Mcm2 is required to inhibit DNA binding and unwinding by Mcm4/6/7. This Mcm2-mediated regulation of Mcm4/6/7 is independent of Mcm3/5. Furthermore, the importance of ATP hydrolysis by Mcm2 to the regulation of the native complex was apparent from the altered DNA binding properties of Mcm2KA-7. Moreover, together with the finding that Mcm2K549A does not support yeast viability, these results indicate that the nucleotide-bound state of Mcm2 is critical in regulating the activities of Mcm4/6/7 and Mcm2-7 complexes.  相似文献   
93.
The pentameric ATPase motor gp16 packages double-stranded DNA into the bacteriophage ?29 virus capsid. On the basis of the results of single-molecule experimental studies, we propose a push and roll mechanism to explain how the packaging motor translocates the DNA in bursts of four 2.5 bp power strokes, while rotating the DNA. In this mechanism, each power stroke accompanies Pi release after ATP hydrolysis. Since the high-resolution structure of the gp16 motor is not available, we borrowed characterized features from the P4 RNA packaging motor in bacteriophage ?12. For each power stroke, a lumenal lever from a single subunit is electrostatically steered to the DNA backbone. The lever then pushes sterically, orthogonal to the backbone axis, such that the right-handed DNA helix is translocated and rotated in a left-handed direction. The electrostatic association allows tight coupling between the lever and the DNA and prevents DNA from slipping back. The lever affinity for DNA decreases towards the end of the power stroke and the DNA rolls to the lever on the next subunit. Each power stroke facilitates ATP hydrolysis in the next catalytic site by inserting an Arg -finger into the site, as captured in ?12-P4. At the end of every four power strokes, ADP release happens slowly, so the cycle pauses constituting a dwell phase during which four ATPs are loaded into the catalytic sites. The next burst phase of four power strokes starts once spontaneous ATP hydrolysis takes place in the fifth site without insertion of an Arg finger. The push and roll model provides a new perspective on how a multimeric ATPase transports DNA, and it might apply to other ring motors as well.  相似文献   
94.
Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is ∼ 250 Å, with ∼ 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing ∼ 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.  相似文献   
95.
The mutagenic and cytotoxic effects of many alkylating agents are reduced by O6-alkylguanine-DNA alkyltransferase (AGT). In humans, this protein not only protects the integrity of the genome, but also contributes to the resistance of tumors to DNA-alkylating chemotherapeutic agents. Here we describe and test models for cooperative multiprotein complexes of AGT with single-stranded and duplex DNAs that are based on in vitro binding data and the crystal structure of a 1:1 AGT-DNA complex. These models predict that cooperative assemblies contain a three-start helical array of proteins with dominant protein-protein interactions between the amino-terminal face of protein n and the carboxy-terminal face of protein n + 3, and they predict that binding duplex DNA does not require large changes in B-form DNA geometry. Experimental tests using protein cross-linking analyzed by mass spectrometry, electrophoretic and analytical ultracentrifugation binding assays, and topological analyses with closed circular DNA show that the properties of multiprotein AGT-DNA complexes are consistent with these predictions.  相似文献   
96.
Single-strand annealing proteins, such as Redβ from λ phage or eukaryotic Rad52, play roles in homologous recombination. Here, we use atomic force microscopy to examine Redβ quaternary structure and Redβ-DNA complexes. In the absence of DNA, Redβ forms a shallow right-handed helix. The presence of single-stranded DNA (ssDNA) disrupts this structure. Upon addition of a second complementary ssDNA, annealing generates a left-handed helix that incorporates 14 Redβ monomers per helical turn, with each Redβ monomer annealing ≈ 11 bp of DNA. The smallest stable annealing intermediate requires 20 bp DNA and two Redβ monomers. Hence, we propose that Redβ promotes base pairing by first increasing the number of transient interactions between ssDNAs. Then, annealing is promoted by the binding of a second Redβ monomer, which nucleates the formation of a stable annealing intermediate. Using threading, we identify sequence similarities between the RecT/Redβ and the Rad52 families, which strengthens previous suggestions, based on similarities of their quaternary structures, that they share a common mode of action. Hence, our findings have implications for a common mechanism of DNA annealing mediated by single-strand annealing proteins including Rad52.  相似文献   
97.
Bacteriophage T4 provides an important model system for studying the mechanism of homologous recombination. We have determined the crystal structure of the T4 UvsX recombinase, and the overall architecture and fold closely resemble those of RecA, including a highly conserved ATP binding site. Based on this new structure, we reanalyzed electron microscopy reconstructions of UvsX-DNA filaments and docked the UvsX crystal structure into two different filament forms: a compressed filament generated in the presence of ADP and an elongated filament generated in the presence of ATP and aluminum fluoride. In these reconstructions, the ATP binding site sits at the protomer interface, as in the RecA filament crystal structure. However, the environment of the ATP binding site is altered in the two filament reconstructions, suggesting that nucleotide cannot be as easily accommodated at the protomer interface of the compressed filament. Finally, we show that the phage helicase UvsW completes the UvsX-promoted strand-exchange reaction, allowing the generation of a simple nicked circular product rather than complex networks of partially exchanged substrates.  相似文献   
98.
Gao Y  Luo L 《Gene》2012,492(1):309-314
Sequence alignment is not directly applicable to whole genome phylogeny since several events such as rearrangements make full length alignments impossible. Here, a novel alignment-free method derived from the standpoint of information theory is proposed and used to construct the whole-genome phylogeny for a population of viruses from 13 viral families comprising 218 dsDNA viruses. The method is based on information correlation (IC) and partial information correlation (PIC). We observe that (i) the IC-PIC tree segregates the population into clades, the membership of each is remarkably consistent with biologist's systematics only with little exceptions; (ii) the IC-PIC tree reveals potential evolutionary relationships among some viral families; and (iii) the IC-PIC tree predicts the taxonomic positions of certain “unclassified” viruses. Our approach provides a new way for recovering the phylogeny of viruses, and has practical applications in developing alignment-free methods for sequence classification.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号