首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   0篇
  国内免费   1篇
  203篇
  2023年   1篇
  2021年   3篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2014年   11篇
  2013年   15篇
  2012年   3篇
  2011年   20篇
  2010年   28篇
  2009年   36篇
  2008年   26篇
  2007年   14篇
  2006年   9篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1993年   2篇
  1987年   3篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
61.
Extracellular DNA (eDNA) is a structural component of the polymeric matrix of biofilms from different species. Different mechanisms for DNA release have been proposed including lysis of cells, lysis of DNA-containing vesicles, and DNA secretion. Here, a genome-wide screen of 3985 non-lethal mutations was performed to identify genes whose deletion alters eDNA release in Escherichia coli. Deleting nlpI, yfeC, and rna increased eDNA from planktonic cultures while deleting hns and rfaD decreased eDNA production. The lipoprotein NlpI negatively affects eDNA release since the overexpression of nlpI decreases eDNA 16 fold while deleting nlpI increases eDNA threefold. The global regulator H-NS is required for eDNA production since DNA was not detected for the hns mutant and production of H-NS restored eDNA production to wild-type levels. Therefore our results suggest that secretion may play a role in eDNA release in E. coli since the effect of the hns deletion on cell lysis (slight decrease) and membrane vesicles (threefold increase) does not account for the reduction in eDNA.  相似文献   
62.
Nucleotide excision repair (NER) is a very important defense system against various types of DNA damage, and it is necessary for maintaining genomic stability. The molecular mechanism of NER has been studied in considerable detail, and it has been shown that proper protein-protein interactions among NER factors are critical for efficient repair. A structure-specific endonuclease, XPF-ERCC1, which makes the 5′ incision in NER, was shown to interact with a single-stranded DNA binding protein, RPA. However, the biological significance of this interaction was not studied in detail. We used the yeast two-hybrid assay to determine that XPF interacts with the p70 subunit of RPA. To further examine the role of this XPF-p70 interaction, we isolated a p70-interaction-deficient mutant form of XPF that contains a single amino acid substitution in the N-terminus of XPF by the reverse yeast two-hybrid assay using randomly mutagenized XPF. The biochemical properties of this RPA-interaction-deficient mutant XPF-ERCC1 are very similar to those of wild-type XPF-ERCC1 in vitro. Interestingly, expression of this mutated form of XPF in the XPF-deficient Chinese hamster ovary cell line, UV41, only partially restores NER activity and UV resistance in vivo compared to wild-type XPF. We discovered that the RPA-interaction-deficient XPF is not localized in nuclei and the mislocalization of XPF-ERCC1 prevents the complex from functioning in NER.  相似文献   
63.
Helicase loading factors are thought to transfer the hexameric ring-shaped helicases onto the replication fork during DNA replication. However, the mechanism of helicase transfer onto DNA remains unclear. In Bacillus subtilis, the protein DnaI, which belongs to the AAA+ family of ATPases, is responsible for delivering the hexameric helicase DnaC onto DNA. Here we investigated the interaction between DnaC and DnaI from Geobacillus kaustophilus HTA426 (GkDnaC and GkDnaI, respectively) and determined that GkDnaI forms a stable complex with GkDnaC with an apparent stoichiometry of GkDnaC6-GkDnaI6 in the absence of ATP. Surface plasmon resonance analysis indicated that GkDnaI facilitates loading of GkDnaC onto single-stranded DNA (ssDNA) and supports complex formation with ssDNA in the presence of ATP. Additionally, the GkDnaI C-terminal AAA+ domain alone could bind ssDNA, and binding was modulated by nucleotides. We also determined the crystal structure of the C-terminal AAA+ domain of GkDnaI in complex with ADP at 2.5 Å resolution. The structure not only delineates the binding of ADP in the expected Walker A and B motifs but also reveals a positively charged region that may be involved in ssDNA binding. These findings provide insight into the mechanism of replicative helicase loading onto ssDNA.  相似文献   
64.
65.
Phase transitions that alter the physical state of ribonucleoprotein particles contribute to the spacial and temporal organization of the densely packed intracellular environment. This allows cells to organize biologically coupled processes as well as respond to environmental stimuli. RNA plays a key role in phase separation events that modulate various aspects of RNA metabolism. Here, we review the role that RNA plays in ribonucleoprotein phase separations.  相似文献   
66.
We compare the activities of the wild-type (gp41WT) and mutant (gp41delta C20) forms of the bacteriophage T4 replication helicase. In the gp41delta C20 mutant the helicase subunits have been genetically truncated to remove the 20 residue C-terminal tail peptide domains present in the wild-type enzyme. Here, we examine the interactions of these helicase forms with the T4 gp59 helicase loader and the gp32 single-stranded DNA binding proteins, both of which are physically and functionally coupled with the helicase in the T4 DNA replication complex. We show that the wild-type and mutant forms of the helicase do not differ in their ability to assemble into dimers and hexamers, nor in their interactions with gp61 (the T4 primase). However they do differ in their gp59-stimulated unwinding activities and in their abilities to translocate along a ssDNA strand that has been coated with gp32. We demonstrate that functional coupling between gp59 and gp41 involves direct interactions between the C-terminal tail peptides of the helicase subunits and the loading protein, and measure the energetics and kinetics of these interactions. This work helps to define a gp41-gp59 assembly pathway that involves an initial interaction between the C-terminal tails of the helicases and the gp59 loader proteins, followed by a conformational change of the helicase subunits that exposes new interaction surfaces, which can then be trapped by the gp59 protein. Our results suggest that the gp41-gp59 complex is then poised to bind ssDNA portions of the replication fork. We suggest that one of the important functions of gp59 may be to aid in the exposure of the ssDNA binding sites of the helicase subunits, which are otherwise masked and regulated by interactions with the helicase carboxy-terminal tail peptides.  相似文献   
67.
68.
Mini-chromosome maintenance (MCM) proteins are the replicative helicase necessary for DNA replication in both eukarya and archaea. Most of archaea only have one MCM gene. Here, we report a 1.8-Å crystal structure of the N-terminal MCM from the archaeon Thermoplasma acidophilum (tapMCM). In the structure, the MCM N-terminus forms a right-handed filament that contains six subunits in each turn, with a diameter of 25 Å of the central channel opening. The inner surface is highly positively charged, indicating DNA binding. This filament structure with six subunits per turn may also suggests a potential role for an open-ring structure for hexameric MCM and dynamic conformational changes in initiation and elongation stages of DNA replication.  相似文献   
69.
Epstein-Barr virus, a double-stranded DNA (dsDNA) virus, is a major human pathogen from the herpesvirus family. The nuclease is one of the lytic cycle proteins required for successful viral replication. In addition to the previously described endonuclease and exonuclease activities on single-stranded DNA and dsDNA substrates, we observed an RNase activity for Epstein-Barr virus nuclease in the presence of Mn2+, giving a possible explanation for its role in host mRNA degradation. Its crystal structure shows a catalytic core of the D-(D/E)XK nuclease superfamily closely related to the exonuclease from bacteriophage lambda with a bridge across the active-site canyon. This bridge may reduce endonuclease activity, ensure processivity or play a role in strand separation of dsDNA substrates. As the DNA strand that is subject to cleavage is likely to make a sharp turn in front of the bridge, endonuclease activity on single-stranded DNA stretches appears to be possible, explaining the cleavage of circular substrates.  相似文献   
70.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form an RNA-mediated microbial immune system against invading foreign genetic elements. Cas5 proteins constitute one of the most prevalent Cas protein families in CRISPR–Cas systems and are predicted to have RNA recognition motif (RRM) domains. Cas5d is a subtype I-C-specific Cas5 protein that can be divided into two distinct subgroups, one of which has extra C-terminal residues while the other contains a longer insertion in the middle of its N-terminal RRM domain. Here, we report crystal structures of Cas5d from Streptococcus pyogenes and Xanthomonas oryzae, which respectively represent the two Cas5d subgroups. Despite a common domain architecture consisting of an N-terminal RRM domain and a C-terminal β-sheet domain, the structural differences between the two Cas5d proteins are highlighted by the presence of a unique extended helical region protruding from the N-terminal RRM domain of X. oryzae Cas5d. We also demonstrate that Cas5d proteins possess not only specific endoribonuclease activity for CRISPR RNAs but also nonspecific double-stranded DNA binding affinity. These findings suggest that Cas5d may play multiple roles in CRISPR-mediated immunity. Furthermore, the specific RNA processing was also observed between S. pyogenes Cas5d protein and X. oryzae CRISPR RNA and vice versa. This cross-species activity of Cas5d provides a special opportunity for elucidating conserved features of the CRISPR RNA processing event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号