首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2021年   3篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2014年   11篇
  2013年   15篇
  2012年   3篇
  2011年   20篇
  2010年   28篇
  2009年   36篇
  2008年   26篇
  2007年   14篇
  2006年   9篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1993年   2篇
  1987年   3篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
排序方式: 共有203条查询结果,搜索用时 31 毫秒
61.
In Escherichia coli phage T4 and many of its phylogenetic relatives, gene 43 consists of a single cistron that encodes a PolB family (PolB-type) DNA polymerase. We describe the divergence of this phage gene and its protein product (gp43) (gene product 43) among 26 phylogenetic relatives of T4 and discuss our observations in the context of diversity among the widely distributed PolB enzymes in nature. In two T4 relatives that grow in Aeromonas salmonicida phages 44RR and 25, gene 43 is fragmented by different combinations of three distinct types of DNA insertion elements: (a) a short intercistronic untranslated sequence (IC-UTS) that splits the polymerase gene into two cistrons, 43A and 43B, corresponding to N-terminal (gp43A) and C-terminal (gp43B) protein products; (b) a freestanding homing endonuclease gene (HEG) inserted between the IC-UTS and the 43B cistron; and (c) a group I intron in the 43B cistron. Phage 25 has all three elements, whereas phage 44RR has only the IC-UTS. We present evidence that (a) the split gene of phage 44RR encodes a split DNA polymerase consisting of a complex between gp43A and gp43B subunits; (b) the putative HEG encodes a double-stranded DNA endonuclease that specifically cleaves intron-free homologues of the intron-bearing 43B site; and (c) the group I intron is a self-splicing RNA. Our results suggest that some freestanding HEGs can mediate the homing of introns that do not encode their own homing enzymes. The results also suggest that different insertion elements can converge on a polB gene and evolve into a single integrated system for lateral transfer of polB genetic material. We discuss the possible pathways for the importation of such insertion elements into the genomes of T4-related phages.  相似文献   
62.
Parsons LM  Yeh DC  Orban J 《Proteins》2004,54(3):375-383
The solution structure of the acidic protein HI1450 from Haemophilus influenzae has been determined by NMR spectroscopy. HI1450 has homologues in ten other bacterial species including Escherichia coli, Vibrio cholerae, and Yersinia pestis but there are no functional assignments for any members of the family. Thirty-one of the amino acids in this 107-residue protein are aspartates or glutamates, contributing to an unusually low pI of 3.72. The secondary structure elements are arranged in an alpha-alpha-beta-beta-beta-beta order with the two alpha helices packed against the same side of an anti-parallel four-stranded beta meander. Two large loops, one between beta1 and beta2 and the other between beta2 and beta3 bend almost perpendicularly across the beta-strands in opposite directions on the non-helical side of the beta-sheet to form a conserved hydrophobic cavity. The HI1450 structure has some similarities to the structure of the double-stranded DNA (dsDNA) mimic uracil DNA glycosylase inhibitor (Ugi) including the distribution of surface charges and the position of the hydrophobic cavity. Based on these similarities, as well as having a comparable molecular surface to dsDNA, we propose that HI1450 may function as a dsDNA mimic in order to inhibit or regulate an as yet unidentified dsDNA binding protein.  相似文献   
63.
A new purification technique for ‘single-stranded DNA-binding proteins’ from calf thymus permits the demonstration of a considerable heterogeneity within these proteins. Several molecular species are obtained with Mr between 24·103 and 30·103 and pI values between 6 and 8, showing significant differences with regard to the following functional properties: (1) strength of binding to single-stranded DNA; (2) lowering of melting temperature of poly[d(A-T)]; (3) stimulation of DNA polymerase α on a poly[d(A-T)] template. Analysis of trypsin digestion products demonstrates that the different molecular species share extensive primary sequence homology. Experiments with antibodies show that the different molecular species are antigenically related and that a 31 kDa protein present in low amounts in our preparations is very cross-reactive.  相似文献   
64.
We compare the activities of the wild-type (gp41WT) and mutant (gp41delta C20) forms of the bacteriophage T4 replication helicase. In the gp41delta C20 mutant the helicase subunits have been genetically truncated to remove the 20 residue C-terminal tail peptide domains present in the wild-type enzyme. Here, we examine the interactions of these helicase forms with the T4 gp59 helicase loader and the gp32 single-stranded DNA binding proteins, both of which are physically and functionally coupled with the helicase in the T4 DNA replication complex. We show that the wild-type and mutant forms of the helicase do not differ in their ability to assemble into dimers and hexamers, nor in their interactions with gp61 (the T4 primase). However they do differ in their gp59-stimulated unwinding activities and in their abilities to translocate along a ssDNA strand that has been coated with gp32. We demonstrate that functional coupling between gp59 and gp41 involves direct interactions between the C-terminal tail peptides of the helicase subunits and the loading protein, and measure the energetics and kinetics of these interactions. This work helps to define a gp41-gp59 assembly pathway that involves an initial interaction between the C-terminal tails of the helicases and the gp59 loader proteins, followed by a conformational change of the helicase subunits that exposes new interaction surfaces, which can then be trapped by the gp59 protein. Our results suggest that the gp41-gp59 complex is then poised to bind ssDNA portions of the replication fork. We suggest that one of the important functions of gp59 may be to aid in the exposure of the ssDNA binding sites of the helicase subunits, which are otherwise masked and regulated by interactions with the helicase carboxy-terminal tail peptides.  相似文献   
65.
Epstein-Barr virus, a double-stranded DNA (dsDNA) virus, is a major human pathogen from the herpesvirus family. The nuclease is one of the lytic cycle proteins required for successful viral replication. In addition to the previously described endonuclease and exonuclease activities on single-stranded DNA and dsDNA substrates, we observed an RNase activity for Epstein-Barr virus nuclease in the presence of Mn2+, giving a possible explanation for its role in host mRNA degradation. Its crystal structure shows a catalytic core of the D-(D/E)XK nuclease superfamily closely related to the exonuclease from bacteriophage lambda with a bridge across the active-site canyon. This bridge may reduce endonuclease activity, ensure processivity or play a role in strand separation of dsDNA substrates. As the DNA strand that is subject to cleavage is likely to make a sharp turn in front of the bridge, endonuclease activity on single-stranded DNA stretches appears to be possible, explaining the cleavage of circular substrates.  相似文献   
66.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form an RNA-mediated microbial immune system against invading foreign genetic elements. Cas5 proteins constitute one of the most prevalent Cas protein families in CRISPR–Cas systems and are predicted to have RNA recognition motif (RRM) domains. Cas5d is a subtype I-C-specific Cas5 protein that can be divided into two distinct subgroups, one of which has extra C-terminal residues while the other contains a longer insertion in the middle of its N-terminal RRM domain. Here, we report crystal structures of Cas5d from Streptococcus pyogenes and Xanthomonas oryzae, which respectively represent the two Cas5d subgroups. Despite a common domain architecture consisting of an N-terminal RRM domain and a C-terminal β-sheet domain, the structural differences between the two Cas5d proteins are highlighted by the presence of a unique extended helical region protruding from the N-terminal RRM domain of X. oryzae Cas5d. We also demonstrate that Cas5d proteins possess not only specific endoribonuclease activity for CRISPR RNAs but also nonspecific double-stranded DNA binding affinity. These findings suggest that Cas5d may play multiple roles in CRISPR-mediated immunity. Furthermore, the specific RNA processing was also observed between S. pyogenes Cas5d protein and X. oryzae CRISPR RNA and vice versa. This cross-species activity of Cas5d provides a special opportunity for elucidating conserved features of the CRISPR RNA processing event.  相似文献   
67.
An immunodominant peptide (p185(378-394)) derived from the c-erbB2 gene product, was recognized by an anti-DNA antibody, B3, and importantly by two classical DNA-binding proteins, Tgo polymerase and Pa-UDG. These reactivities were inhibited by DNA, confirming that the peptide mimicked DNA. BALB/c mice immunized with p185(378-394) developed significant titers of IgG anti-dsDNA antibodies. Screening of 39 human lupus sera revealed that 5% of these sera possessed reactivity toward p185(378-394). Representative mouse and human sera with anti-p185(378-394) reactivity bound intact p185, and this binding was inhibited by dsDNA. This is the first demonstration of a naturally occurring autoantigen mimotope. The present study identifies a potential antigenic stimulus that might trigger systemic lupus erythematosus in a subset of patients.  相似文献   
68.
Nucleotide excision repair (NER) is a very important defense system against various types of DNA damage, and it is necessary for maintaining genomic stability. The molecular mechanism of NER has been studied in considerable detail, and it has been shown that proper protein-protein interactions among NER factors are critical for efficient repair. A structure-specific endonuclease, XPF-ERCC1, which makes the 5′ incision in NER, was shown to interact with a single-stranded DNA binding protein, RPA. However, the biological significance of this interaction was not studied in detail. We used the yeast two-hybrid assay to determine that XPF interacts with the p70 subunit of RPA. To further examine the role of this XPF-p70 interaction, we isolated a p70-interaction-deficient mutant form of XPF that contains a single amino acid substitution in the N-terminus of XPF by the reverse yeast two-hybrid assay using randomly mutagenized XPF. The biochemical properties of this RPA-interaction-deficient mutant XPF-ERCC1 are very similar to those of wild-type XPF-ERCC1 in vitro. Interestingly, expression of this mutated form of XPF in the XPF-deficient Chinese hamster ovary cell line, UV41, only partially restores NER activity and UV resistance in vivo compared to wild-type XPF. We discovered that the RPA-interaction-deficient XPF is not localized in nuclei and the mislocalization of XPF-ERCC1 prevents the complex from functioning in NER.  相似文献   
69.
Double-stranded DNA bacteriophages and their eukaryotic virus counterparts have 12-fold head-tail connector assemblages embedded at a unique capsid vertex. This vertex is the site of assembly of the DNA packaging motor, and the connector has a central channel through which viral DNA passes during genome packaging and subsequent host infection. Crystal structures of connectors from different phages reveal either disordered residues or structured loops that project into the connector channel. Given the proximity to the translocating DNA substrate, these loops have been proposed to play a role in DNA packaging. Previous models have proposed structural motions in either the packaging ATPase or the connector channel loops as the driving force that translocates the DNA into the prohead. Here, we mutate the channel loops of the Bacillus subtilis bacteriophage φ29 connector and show that these loops have no active role in translocation of DNA. Instead, they appear to have an essential function near the end of packaging, acting to retain the packaged DNA in the head in preparation for motor detachment and subsequent tail assembly and virion completion.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号