首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   79篇
  国内免费   127篇
  2024年   5篇
  2023年   12篇
  2022年   16篇
  2021年   31篇
  2020年   33篇
  2019年   28篇
  2018年   29篇
  2017年   28篇
  2016年   44篇
  2015年   31篇
  2014年   25篇
  2013年   42篇
  2012年   27篇
  2011年   34篇
  2010年   24篇
  2009年   21篇
  2008年   24篇
  2007年   34篇
  2006年   22篇
  2005年   30篇
  2004年   19篇
  2003年   19篇
  2002年   13篇
  2001年   13篇
  2000年   20篇
  1999年   22篇
  1998年   14篇
  1997年   12篇
  1996年   9篇
  1995年   8篇
  1994年   11篇
  1993年   9篇
  1992年   9篇
  1991年   7篇
  1990年   6篇
  1989年   9篇
  1988年   4篇
  1987年   3篇
  1986年   8篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
排序方式: 共有772条查询结果,搜索用时 15 毫秒
101.
Abstract Trees growing along windy coasts often have canopies that are greatly reduced in size by the sculpting effects of wind and salt spray. Trees with environmentally reduced stature are called elfinwood (windswept shrub‐form or krummholz) and are ecologically important because they represent outposts growing at the limit of tree success. The purpose of this study was to assess if Banksia grandis elfinwood growing at Cape Leeuwin had a different nutrient status than normal low‐form (LF) trees growing nearby, and if nutrient deficiencies, toxicities and/or imbalances were among the limiting factors imposed on elfinwood. The concentrations of N, P, K, Ca, Mg, Na, Cl, Fe, Mn, Zn, Cu, Mo and B were analysed for mature green foliage, immature foliage, foliage litter, flowers and soil. When the elfinwood and LF trees were compared, the foliar nutrient status was generally similar, except that elfinwood foliage had significantly higher mean concentrations of N, Zn and Cu, while LF trees had higher Fe and Mn contents. Many nutrients were conserved before leaves were shed in both elfinwood and LF trees, including N, P, K, Na, Cl, Mn and Cu (LF trees also conserved Ca and Mg). However, elfinwood and LF tree‐litter contained significantly higher Fe concentrations than green foliage (elfinwood litter also had higher levels of Mg and B). It is tempting to suggest that the translocation of Fe into leaves before they were shed is a regulation mechanism to prevent Fe toxicity, or imbalance in the Fe : Mn ratio. Proteoid roots strongly acidify the soil to mobilize P, which also chemically reduces Fe+3 to plant‐available Fe+2. The increased supply of Fe+2 in the rhizosphere, caused by the action of proteoid roots, might tend to defeat self‐regulation of Fe uptake. It is possible that excess Fe accumulation in the plant might be regulated, in part, by exporting Fe into the leaves before they are shed. The nutrient status of B. grandis elfinwood is compared with mountain elfinwood of North America. The extreme habitat of coastal elfinwood provides many theoretical pathways for nutrient limitation, but B. grandis elfinwood at Cape Leeuwin does not appear to be nutrient deficient.  相似文献   
102.
The effect of wind speed and distance from the source on the male response of the aphid parasitoid, Aphidius ervi (Hymenoptera: Aphidiidae), to a pheromone source was studied in a wind tunnel. The number of males taking flight, entering the plume and successfully reaching the source, decreased at wind speeds >50 cm/s. Furthermore, the proportion of those attempting upwind flight that fell to the ground increased with increasing wind speed. In contrast, distance from the source had no significant effect on any of the parameters examined. While male flight behavior was significantly reduced at 70 cm/s, some males walked to the source when there was a bridge connecting the pheromone source and the release platform. This suggests that ambulatory behavior could be a significant component of male mate searching in A. ervi when wind conditions are too strong for upwind flight. The possible effects of variation in atmospheric pressure on male flight behavior to the long distance pheromone, as well as to the short distance one, were also investigated. No significant effects of atmospheric pressure were observed. These findings differ significantly from those previously reported for another aphid parasitoid, A. nigripes, and the reasons for such differences are discussed.  相似文献   
103.
104.
“海棠”台风气流场对褐飞虱北迁路径的影响   总被引:1,自引:0,他引:1  
基于GIS、GrADS软件和HYSPLIT 4.8轨迹模式,分析了0505号台风“海棠”发生期间(2005年7月19—21日)中国10个省42个虫情观测点的逐日灯诱褐飞虱虫量、850 hPa等压面的风场和20个虫情监测点的褐飞虱迁飞轨迹.结果表明:台风“海棠”登陆中国后,改变了引导褐飞虱向北迁飞的西南气流,造成风场在台风西南部的辐合和大范围的转向,阻止了褐飞虱的向北迁飞,迫使其在某些区域集中迫降;850 hPa等压面上切变线附近是褐飞虱集中降落的区域;在台风衰亡时期,台风东南部气流暖式切变区是大量降虫的区域;台风整体登陆后,西南气流的再次建立,造成褐飞虱的大量北迁.  相似文献   
105.
Aims To better understand how demographic processes shape the range dynamics of woody plants (in this case, Proteaceae), we introduce a likelihood framework for fitting process‐based models of range dynamics to spatial abundance data. Location The fire‐prone Fynbos biome (Cape Floristic Region, South Africa). Methods Our process‐based models have a spatially explicit demographic submodel (describing dispersal, reproduction, mortality and local extinction) as well as an observation submodel (describing imperfect detection of individuals), and are constrained by species‐specific predictions of habitat distribution models and process‐based models for seed dispersal by wind. Free model parameters were varied to find parameter sets with the highest likelihood. After testing this approach with simulated data, we applied it to eight Proteaceae species that differ in breeding system (monoecy versus dioecy) and adult fire survival. We assess the importance of Allee effects and negative density dependence for range dynamics, by using the Akaike information criterion to select between alternative models fitted for the same species. Results The best model for all dioecious study species included Allee effects, whereas this was true for only one of four monoecious species. As expected, sprouters (in which adults survive fire) were estimated to have lower rates of reproduction and catastrophic population extinction than related non‐sprouters. Overcompensatory population dynamics seem important for three of four non‐sprouters. We also found good quantitative agreement between independent data and most estimates of reproduction, carrying capacity and extinction probability. Main conclusions This study shows that process‐based models can quantitatively describe how large‐scale abundance distributions arise from the movement and interaction of individuals. It stresses links between the life history, demography and range dynamics of Proteaceae: dioecious species seem more susceptible to Allee effects which reduce migration ability and increase local extinction risk, and sprouters seem to have high persistence of established populations, but their low reproduction limits habitat colonization and migration.  相似文献   
106.
Filiform hairs located on the cerci of crickets are among the most sensitive sensors in the animal world and enable crickets to sense the faintest air movements generated by approaching predators. While the neurophysiological and biomechanical aspects of this sensory system have been studied independently for several decades, their integration into a coherent framework was wanting. In order to evaluate the hair canopy tuning to predator signals, we built a model of cercal population coding of oscillating air flows by the hundreds of hairs on the cerci of the sand cricket Gryllus bimaculatus (Insecta: Orthoptera). A complete survey of all hairs covering the cerci was done on intact cerci using scanning electronic microscopy. An additive population coding of sinusoid signals of varying frequencies and velocities taking into account hair directionality delivered the cercal canopy tuning curve. We show that the range of frequencies and velocities at which the cricket sensory system is best tuned corresponds to the values of signals produced by approaching predators. The relative frequencies of short (< 0.5 x 10(-3) m) and long hairs and their differing responses to oscillating air flows therefore enable crickets to detect predators in a time-frequency-intensity space both as far as possible and at close range.  相似文献   
107.
《植物生态学报》2017,41(7):738
Aims The objectives were to identify the age of the arboreous Tamarix austromongolica in the flood plain area of the Qinghai Plateau and clarify the response patterns of T. austromongolica’s growth to the environmental factors. We focused on social issues about whether the T. austromongolica should be protected and how to protect in the reservoir area of a hydropower station. Methods In this study, arboreous T. austromongolica in both reservoir submerged and non-submerged areas were sampled and measured based on the dendrochronology method. The ages were estimated based on the geometrical characteristics of the pith and the identified age of the inner ring. The correlation and response analysis showed the relationship between T. austromongolica’s growth and environmental factors. Important findings We accurately determined the age and historical growth dynamics of the T. austromongolica with large diameter at breast height (DBH). The results showed a special accretion phenomenon in arboreous T. austromongolica, which accelerated the DBH increasing, i.e. no direct relationship existed between the plants’ DBH and ages of the individuals. Radial growth of T. austromongolica, increased rapidly in the 1970s and 1980s and began to stabilize in the late 1980s, and mainly responded to the runoff in July and August of the Yellow River. Increasing runoff would promote the radial growth of T. austromongolica. The growth of the immaturate plant showed significant negative correlation with the wind speed in the growing season. The results will be of theoretical significance to the formation of the special morphology of the T. austromongolica, and will provide scientific practical guidance in designing the protection schemes.  相似文献   
108.
Nest building is a taxonomically widespread and diverse trait that allows animals to alter local environments to create optimal conditions for offspring development. However, there is growing evidence that climate change is adversely affecting nest‐building in animals directly, for example via sea‐level rises that flood nests, reduced availability of building materials, and suboptimal sex allocation in species exhibiting temperature‐dependent sex determination. Climate change is also affecting nesting species indirectly, via range shifts into suboptimal nesting areas, reduced quality of nest‐building environments, and changes in interactions with nest predators and parasites. The ability of animals to adapt to sustained and rapid environmental change is crucial for the long‐term persistence of many species. Many animals are known to be capable of adjusting nesting behaviour adaptively across environmental gradients and in line with seasonal changes, and this existing plasticity potentially facilitates adaptation to anthropogenic climate change. However, whilst alterations in nesting phenology, site selection and design may facilitate short‐term adaptations, the ability of nest‐building animals to adapt over longer timescales is likely to be influenced by the heritable basis of such behaviour. We urgently need to understand how the behaviour and ecology of nest‐building in animals is affected by climate change, and particularly how altered patterns of nesting behaviour affect individual fitness and population persistence. We begin our review by summarising how predictable variation in environmental conditions influences nest‐building animals, before highlighting the ecological threats facing nest‐building animals experiencing anthropogenic climate change and examining the potential for changes in nest location and/or design to provide adaptive short‐ and long‐term responses to changing environmental conditions. We end by identifying areas that we believe warrant the most urgent attention for further research.  相似文献   
109.
Gradual changes in vegetation structure and composition are expected to result from continuous environmental change with increasing elevation on mountains. Hence, the occurrence of abrupt or discrete ecotones in vegetation patterns is intriguing and may suggest key controls on community assembly in montane forests. We review tropical montane forest (TMF) zonation patterns focusing on a case study from the Cordillera Central, Hispaniola where a striking discontinuity in forest composition occurs consistently at ~2000 m elevation, with cloud forest below and monodominant pine forest above. We propose that a discontinuity in climatic factors (temperature, humidity) associated with the trade‐wind inversion (TWI) is the primary cause of this and other ecotones in TMFs that occur at a generally consistent elevation. Low humidity, fires and occasional frost above the TWI favor pine over cloud forest species. Fires in the high‐elevation pine forest have repeatedly burned down to the ecotone boundary and extinguished in the cloud forest owing to its low flammability, reinforced by high humidity, cloud immersion and epiphytic bryophyte cover. Small‐scale fire patterns along the ecotone are influenced by topography and where forest structure is impacted by hurricanes and landslides. Analogous patterns are observed worldwide in other TMFs where the TWI is important, high‐elevation fires are frequent, and the flora contains frost‐tolerant species (often of temperate lineage). The response of this and other TMFs to anthropogenic climate change is highly uncertain owing to potentially countervailing effects of different climatic phenomena, including warming temperatures and decreased frost; changes in the TWI, high‐elevation drought or cloudiness; and increased frequency or intensity of hurricanes and El Niño‐Southern Oscillation events.  相似文献   
110.
Pioneer herbivorous insects may find their host plants through a combination of visual and constitutive host‐plant volatile cues, but once a site has been colonized, feeding damage changes the quantity and quality of plant volatiles released, potentially altering the behavior of conspecifics who detect them. Previous work on the pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), demonstrated that this insect can detect and orient to constitutive host plant volatiles released from pepper [Capsicum annuum L. (Solanaceae)]. Here we investigated the response of the weevil to whole plants and headspace collections of plants damaged by conspecifics. Mated weevils preferred damaged flowering as well as damaged fruiting plants over undamaged plants in a Y‐tube olfactometer. They also preferred volatiles from flowering and fruiting plants with actively feeding weevils over plants with old feeding damage. Both sexes preferred volatiles from fruiting plants with actively feeding weevils over flowering plants with actively feeding weevils. Females preferred plants with 48 h of prior feeding damage over plants subjected to weevil feeding for only 1 h, whereas males showed no preference. When attraction to male‐ and female‐inflicted feeding damage was compared in the Y‐tube, males and females showed no significant preference. Wind tunnel plant assays and four‐choice olfactometer assays using headspace volatiles confirmed the attraction of weevils to active feeding damage on fruiting plants. In a final four‐choice olfactometer assay using headspace collections, we tested the attraction of mated males and virgin and mated females to male and female feeding damage. In these headspace volatile assays, mated females again showed no preference for male feeding; however, virgin females and males preferred the headspace volatiles of plants fed on by males, which contained the male aggregation pheromone in addition to plant volatiles. The potential for using plant volatile lures to improve pepper weevil monitoring and management is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号