首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8894篇
  免费   1548篇
  国内免费   2730篇
  2024年   73篇
  2023年   268篇
  2022年   226篇
  2021年   396篇
  2020年   516篇
  2019年   544篇
  2018年   516篇
  2017年   492篇
  2016年   505篇
  2015年   500篇
  2014年   491篇
  2013年   577篇
  2012年   443篇
  2011年   488篇
  2010年   413篇
  2009年   501篇
  2008年   557篇
  2007年   606篇
  2006年   580篇
  2005年   498篇
  2004年   469篇
  2003年   416篇
  2002年   383篇
  2001年   359篇
  2000年   336篇
  1999年   309篇
  1998年   277篇
  1997年   209篇
  1996年   169篇
  1995年   152篇
  1994年   132篇
  1993年   114篇
  1992年   116篇
  1991年   93篇
  1990年   97篇
  1989年   67篇
  1988年   39篇
  1987年   42篇
  1986年   41篇
  1985年   24篇
  1984年   31篇
  1983年   21篇
  1982年   34篇
  1981年   10篇
  1980年   9篇
  1979年   8篇
  1978年   7篇
  1977年   8篇
  1976年   3篇
  1972年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The occurrence of multiple introduction events, or sudden emergence from a host jump, of forest pathogens may be an important factor in successful establishment in a novel environment or on a new host; however, few studies have focused on the introduction and emergence of fungal pathogens in forest ecosystems. While Ophiognomonia clavigignenti‐juglandacearum (Oc‐j), the butternut canker fungus, has caused range‐wide mortality of butternut trees in North America since its first observation in 1967, the history of its emergence and spread across the United States and Canada remains unresolved. Using 17 single nucleotide polymorphic loci, we investigated the genetic population structure of 101 isolates of Oc‐j from across North America. Clustering analysis revealed that the Oc‐j population in North America is made up of three differentiated genetic clusters of isolates, and these genetic clusters were found to have a strong clonal structure. These results, in combination with the geographic distribution of the populations, suggest that Oc‐j was introduced or has emerged in North America on more than one occasion, and these clonal lineages have since proliferated across much of the range of butternut. No evidence of genetic recombination was observed in the linkage analysis, and conservation of the distinct genetic clusters in regions where isolates from two or more genetic clusters are present, would indicate a very minimal or non‐existent role of sexual recombination in populations of Oc‐j in North America.  相似文献   
992.
We tested the hypothesis that marginal fragmented populations of eastern white cedar (EWC) are genetically isolated due to reduced pollen and gene flow. In accordance with the central-marginal model, we predicted a decrease in population genetic diversity and an increase in differentiation along the latitudinal gradient from the boreal mixed-wood to northern coniferous forest. A total of 24 eastern white cedar populations were sampled along the north-south latitudinal gradient for microsatellite genotyping analysis. Positive Fis values and heterozygote deficiency were observed in populations from the marginal (Fis = 0.244; PHW = 0.0042) and discontinuous zones (Fis = 0.166; PHW = 0.0042). However, populations from the continuous zone were in HW equilibrium (Fis = −0.007; PHW = 0.3625). There were no significant latitudinal effects on gene diversity (Hs), allelic richness (AR), or population differentiation (Fst). Bayesian and NJT (neighbor-joining tree) analyses demonstrated the presence of a population structure that was partly consistent with the geographic origins of the populations. The impact of population fragmentation on the genetic structure of EWC is to create a positive inbreeding coefficient, which was two to three times higher on average than that of a population from the continuous zone. This result indicated a higher occurrence of selfing within fragmented EWC populations coupled with a higher degree of gene exchange among near-neighbor relatives, thereby leading to significant inbreeding. Increased population isolation was apparently not correlated with a detectable effect on genetic diversity. Overall, the fragmented populations of EWC appear well-buffered against effects of inbreeding on genetic erosion.  相似文献   
993.
The prehydrolysis liquor (PHL) of the kraft‐based dissolving pulp production process contains various amounts of hemicelluloses that can be utilized in the production of value‐added products. In this work, a new process was proposed for removing the inhibitors of PHL via employing a flocculation concept to facilitate the utilization of hemicelluloses. Lignin, lignocelluloses/cationic polymer complexes, and possibly ethanol are the main products of this process. This process has been experimentally evaluated with an industrially produced PHL and cationic polymers. The results showed that 16% of lignin, 19% of acetic acid, 43% of furfural, and insignificant amount of sugars were removed from PHL via pretreating PHL with acid and lime at pH 7. Furthermore, by adding 0.4–0.5 mg g?1 polydiallyldimethylammonium chloride (PDADMAC) or chitosan to the pretreated PHL, 12–14% acetic acid, 40–50% furfural, 5–6% monomeric sugars, and 25% oligomeric sugars were removed from the PHL. The complexes made from these components may be applied as organic fillers in various industries. Alternatively, by adding 1.2 or 1.4 mg g?1 PDADMAC or chitosan to the pretreated PHL, 30 or 35% of lignin was removed, respectively, which induced complexes that could be used as a fuel source. The composition of the complexes formed was also determined in this work. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 998–1004, 2012  相似文献   
994.
Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R) through bark during experimental bole heating. Second, using data from a large‐scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R, while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire‐induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick‐barked individuals (≥18 mm) subjected to medium‐intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire‐induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests.  相似文献   
995.
Nitrogen (N) added through atmospheric deposition or as fertilizer to boreal and temperate forests reduces both soil decomposer activity (heterotrophic respiration) and the activity of roots and mycorrhizal fungi (autotrophic respiration). However, these negative effects have been found in studies that applied relatively high levels of N, whereas the responses to ambient atmospheric N deposition rates are still not clear. Here, we compared an unfertilized control boreal forest with a fertilized forest (100 kg N ha?1 yr?1) and a forest subject to N‐deposition rates comparable to those in Central Europe (20 kg N ha?1 yr?1) to investigate the effects of N addition rate on different components of forest floor respiration and the production of ectomycorrhizal fungal sporocarps. Soil collars were used to partition heterotrophic (Rh) and autotrophic (Ra) respiration, which was further separated into respiration by tree roots (Rtr) and mycorrhizal hyphae (Rm). Total forest floor respiration was twice as high in the low N plot compared to the control, whereas there were no differences between the control and high N plot. There were no differences in Rh respiration among plots. The enhanced forest floor respiration in the low N plot was, therefore, the result of increased Ra respiration, with an increase in Rtr respiration, and a doubling of Rm respiration. The latter was corroborated by a slightly greater ectomycorrhizal (EM) fungal sporocarp production in the low N plot as compared to the control plot. In contrast, EM fungal sporocarp production was nearly eliminated, and Rm respiration severely reduced, in the high N plot, which resulted in significantly lower Ra respiration. We thus found a nonlinear response of the Ra components to N addition rate, which calls for further studies of the quantitative relations among N addition rate, plant photosynthesis and carbon allocation, and the function of EM fungi.  相似文献   
996.
Experimental study of the effects of projected climate change on plant phenology allows us to isolate effects of warming on life‐history events such as leaf out. We simulated a 2 °C temperature increase and 20% precipitation increase in a recently harvested temperate deciduous forest community in central Pennsylvania, USA, and observed the leaf out phenology of all species in 2009 and 2010. Over 130 plant species were monitored weekly in study plots, but due to high variability in species composition among plots, species were grouped into five functional groups: short forbs, tall forbs, shrubs, small trees, and large trees. Tall forbs and large trees, which usually emerge in the late spring, advanced leaf out 14–18 days in response to warming. Short forbs, shrubs, and small trees emerge early in spring and did not alter their phenology in response to warming or increased precipitation treatments. Earlier leaf out of tall forbs and large trees coincided with almost 3 weeks of increased community‐level leaf area index, indicating greater competition and a condensed spring green‐up period. While phenology of large trees and tall forbs appears to be strongly influenced by temperature‐based growth cues, our results suggest that photoperiod and chilling cues more strongly influence the leaf out of other functional groups. Reduced freeze events and warmer temperatures from predicted climate change will interact with nontemperature growth cues to have cascading consequences throughout the ecosystem.  相似文献   
997.
We identified the extent to which ant diversity occurs despite conversion of forests into cocoa plantations by examining the communities across four age classes of plantations (classes I–IV with increasing age from 0–5 to 21–40 years) and in their original forests. An extensive sampling protocol consisting of pitfall trapping, leaf litter sampling, soil sampling and hand sampling was used to characterize ant species richness and composition in three replicates of each age class and in the remaining forest patches. A total of one hundred ant species was found in all habitats combined. While the forest was the richest habitat (73 species), species richness in the different plantation age classes varied as follows (sorted in descending order): class IV (69 species) > class III (57 species) > class I (52 species) > class II (43 species). Age gradient was thus significantly positively correlated with mean species richness and with the relative abundance of some subfamilies. The species composition differed greatly between some plantation age classes and the forest. The two youngest cocoa age classes (I and II) were most dissimilar to the forest. In contrast, forest ants were well represented in the old cocoa age classes (III and IV). Three functional guilds (generalist predators, specialist predators and territorially dominant arboreal species) were in their relative abundance significantly correlated to the age gradient. Overall, cocoa cultivations retaining a floristically diverse and structurally complex forest structure are a suitable management system for the conservation of ant species of the formerly forested habitats.  相似文献   
998.
The long residence time of carbon in forests and soils means that both the current state and future behavior of the terrestrial biosphere are influenced by past variability in climate and anthropogenic land use. Over the last half‐millennium, European terrestrial ecosystems were affected by the cool temperatures of the Little Ice Age, rising CO2 concentrations, and human induced deforestation and land abandonment. To quantify the importance of these processes, we performed a series of simulations with the LPJ dynamic vegetation model driven by reconstructed climate, land use, and CO2 concentrations. Although land use change was the major control on the carbon inventory of Europe over the last 500 years, the current state of the terrestrial biosphere is largely controlled by land use change during the past century. Between 1500 and 2000, climate variability led to temporary sequestration events of up to 3 Pg, whereas increasing atmospheric CO2 concentrations during the 20th century led to an increase in carbon storage of up to 15 Pg. Anthropogenic land use caused between 25 Pg of carbon emissions and 5 Pg of uptake over the same time period, depending on the historical and spatial pattern of past land use and the timing of the reversal from deforestation to afforestation during the last two centuries. None of the currently existing anthropogenic land use change datasets adequately capture the timing of the forest transition in most European countries as recorded in historical observations. Despite considerable uncertainty, our scenarios indicate that with limited management, extant European forests have the potential to absorb between 5 and 12 Pg of carbon at the present day.  相似文献   
999.
Variation in soil properties may influence diversity of invertebrate communities, a crucial component of every ecosystem, and their impact should be considered also in restoration management. Although most spoil heaps have been reclaimed after brown coal mining, some post‐mining sites are left to natural succession. Little is known, however, about the effects of these two fundamentally different approaches on diversity of invertebrates inhabiting these stands. While controlling for habitat characteristics, we analyzed the effects of soil properties on species richness of seven invertebrate groups representing various trophic levels and diverse spatial niches at afforested spoil heaps and adjacent pits managed under these two basic restoration approaches in the North Bohemia Brown Coal Basin (Czech Republic, central Europe). Forty‐seven percentage of 140 invertebrate species occurred on both reclamations and successions, but many were found exclusively on successions (37%) or reclamations (16%). The species richness of various groups was affected by different soil properties either independently of other variables or in interaction with microclimatic conditions or management history. These results imply a need for diverse management approaches in post‐mining areas to support the diversity of invertebrate communities. Technical reclamations with artificial plantations and spontaneous forest development on bare substrate (thus creating mosaics of open patches and afforested stands with different soil deposit materials) were found to be reasonable alternatives to support invertebrate richness on post‐mining forested stands. We conclude that these two approaches should properly be combined in practice.  相似文献   
1000.
Fire suppression has altered the uplands of northern Mississippi (U.S.A.). Once blanketed by open oak woodlands, this region is now experiencing mesophytic tree invasion, canopy closure, reduced oak regeneration, and herbaceous understory loss. In an attempt to reestablish historical conditions, experimental restoration was initiated through thinning and burning treatments. Our study, part of a comprehensive monitoring effort, is the first to examine the impact of oak woodland restoration on the spider community and associated habitat structure. Samples measuring a variety of environmental variables and utilizing an array of spider collecting techniques were taken within four habitats located at the restoration site: fire‐suppressed forest, moderately treated forest, intensely treated forest, and old field. Two main conclusions resulted from this study. (1) Open‐habitat specialists responded positively to increased canopy openness regardless of the availability of herbaceous vegetation. (2) Woodland restoration increased spider diversity, perhaps through the formation of diverse habitat structure and/or by altering species dominance patterns. A rise in open‐habitat specialist diversity was observed as treatment intensity increased, with no compensatory reduction in the diversity of forest specialists. What remains to be seen is whether the continued transition to open woodland habitat will result in losses of forest specialist species. More aggressive overstory tree thinning is currently being administered to encourage the growth of herbaceous grasses and forbs, which will permit future tests of a hypothesized decline in forest specialists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号