首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   622篇
  免费   70篇
  国内免费   26篇
  718篇
  2024年   4篇
  2023年   14篇
  2022年   28篇
  2021年   22篇
  2020年   32篇
  2019年   19篇
  2018年   36篇
  2017年   35篇
  2016年   35篇
  2015年   31篇
  2014年   50篇
  2013年   46篇
  2012年   28篇
  2011年   43篇
  2010年   30篇
  2009年   41篇
  2008年   34篇
  2007年   31篇
  2006年   26篇
  2005年   19篇
  2004年   21篇
  2003年   10篇
  2002年   17篇
  2001年   13篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   5篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有718条查询结果,搜索用时 15 毫秒
101.
In this article, we describe the use of pH- responsive hydrogels as matrices for the immobilization of two enzymes, glucose oxidase (GOx) and glutamate oxidase (GlutOx). Spherical hydrogel beads were prepared by inverse suspension polymerization and the enzymes were immobilized by either physical entrapment or covalent immobilization within or on the hydrogel surface. Packed-bed bioreactors were prepared containing the bioactive hydrogels and these incorporated into flow injection (FI) systems for the quantitation of glucose and monosodium glutamate (MSG) respectively. The FI amperometric detector comprised a microfabricated interdigitated array within a thin-layer flow cell. For the FI manifold incorporating immobilized GOx, glucose response curves were found to be linear over the concentration range 1.8-280 mg dL(-1) (0.1-15.5 mM) with a detection limit of 1.4 mg dL(-1) (0.08 mM). Up to 20 samples can be manually analyzed per hour, with the hydrogel-GOx bioreactor exhibiting good within-day (0.19%) precision. The optimized FI manifold for MSG quantitation yielded a linear response range of up to 135 mg dL(-1) (8 mM) with a detection limit of 3.38 mg dL(-1) (0.2 mM) and a throughput of 30 samples h(-1). Analysis of commercially produced soup samples gave a within-day precision of 3.6%. Bioreactors containing these two physically entrapped enzymes retained > 60% of their initial activities after a storage period of up to 1 year.  相似文献   
102.
Recently, defect engineering has been used to intruduce half‐metallicity into selected semiconductors, thereby significantly enhancing their electrical conductivity and catalytic/electrocatalytic performance. Taking inspiration from this, we developed a novel bifunctional electrode consisting of two monolayer thick manganese dioxide (δ‐MnO2) nanosheet arrays on a nickel foam, using a novel in‐situ method. The bifunctional electrode exposes numerous active sites for electrocatalytic rections and displays excellent electrical conductivity, resulting in strong performance for both HER and OER. Based on detailed structure analysis and density functional theory (DFT) calculations, the remarkably OER and HER activity of the bifunctional electrode can be attributed to the ultrathin δ‐MnO2 nanosheets containing abundant oxygen vacancies lead to the formation od Mn3+ active sites, which give rise to half‐metallicity properties and strong H2O adsorption. This synthetic strategy introduced here represents a new method for the development of non‐precious metal Mn‐based electrocatalysts for eddicient energy conversion.  相似文献   
103.
104.
The RP protein (RPP) array approach immobilizes minute amounts of cell lysates or tissue protein extracts as distinct microspots on NC‐coated slide. Subsequent detection with specific antibodies allows multiplexed quantification of proteins and their modifications at a scale that is beyond what traditional techniques can achieve. Cellular functions are the result of the coordinated action of signaling proteins assembled in macromolecular complexes. These signaling complexes are highly dynamic structures that change their composition with time and space to adapt to cell environment. Their comprehensive analysis requires until now relatively large amounts of cells (>5×107) due to their low abundance and breakdown during isolation procedure. In this study, we combined small scale affinity capture of the T‐cell receptor (TCR) and RPP arrays to follow TCR signaling complex assembly in human ex vivo isolated CD4 T‐cells. Using this strategy, we report specific recruitment of signaling components to the TCR complex upon T‐cell activation in as few as 0.5 million of cells. Second‐ to fourth‐order TCR interacting proteins were accurately quantified, making this strategy specially well‐suited to the analysis of membrane‐associated signaling complexes in limited amounts of cells or tissues, e.g., ex vivo isolated cells or clinical specimens.  相似文献   
105.
We introduce a novel experimental methodology for the reverse‐phase protein microarray platform which reduces the typical measurement CV as much as 70%. The methodology, referred to as array microenvironment normalization, increases the statistical power of the platform. In the experiment, it enabled the detection of a 1.1‐fold shift in prostate specific antigen concentration using approximately six technical replicates rather than the 37 replicates previously required. The improved reproducibility and statistical power should facilitate clinical implementation of the platform.  相似文献   
106.
Dietary and xenobiotic compounds may alter endocrine signaling and lipid homeostasis, thus inducing obesity. We describe a short-term assay method, the zebrafish obesogenic (ZO) test, for examining the effects of diet, drugs, and environmental contaminants, singly or in combination, on white adipose tissue (WAT) dynamics in live larvae. The ZO test is an intermediate step in obesity research, between in vitro and rodent assays, and may be also used to study the effect of environmental toxicants on the adiposity of aquatic species. The procedure, using Nile Red (NR) fluorescent probe to reveal adipocyte lipid droplets, is suitable for pharmaceutical or toxicological screening. Larvae treated at an environmentally-relevant concentration of tributyltin chloride (TBT), an environmental obesogen, exhibited a remarkable increase in adiposity, irrespective of the lipid composition of the background diet. Exogenous compounds, e.g., rosiglitazone or TBT, known to increase adiposity in the fasting state, were classified as obesogenic. Anti-obesogenic compounds favored a decrease in adiposity in the fasting state. The ZO test, using adipocyte lipid droplet size and adiposity as its endpoints, is a whole-organism alternative testing assay for obesogenic and anti-obesogenic compounds and mixtures and provides relevant information for environmental and human risk assessments.  相似文献   
107.
108.

Background

Last generations of Single Nucleotide Polymorphism (SNP) arrays allow to study copy-number variations in addition to genotyping measures.

Results

MPAgenomics, standing for multi-patient analysis (MPA) of genomic markers, is an R-package devoted to: (i) efficient segmentation and (ii) selection of genomic markers from multi-patient copy number and SNP data profiles. It provides wrappers from commonly used packages to streamline their repeated (sometimes difficult) manipulation, offering an easy-to-use pipeline for beginners in R.The segmentation of successive multiple profiles (finding losses and gains) is performed with an automatic choice of parameters involved in the wrapped packages. Considering multiple profiles in the same time, MPAgenomics wraps efficient penalized regression methods to select relevant markers associated with a given outcome.

Conclusions

MPAgenomics provides an easy tool to analyze data from SNP arrays in R. The R-package MPAgenomics is available on CRAN.  相似文献   
109.
Excessive proliferation of vascular smooth muscle cells (VSMCs) is a critical element in the development of several vascular pathologies, particularly in atherosclerosis and in restenosis due to angioplasty. We have shown that butyrate, a powerful antiproliferative agent, a strong promoter of cell differentiation and an inducer of apoptosis inhibits VSMC proliferation at physiological concentrations with no cytotoxicity. In the present study, we have used cDNA array technology to unravel the molecular basis of the antiproliferative effect of butyrate on VSMCs. To assess the involvement of gene expression in butyrate-inhibited VSMC proliferation, proliferating VSMCs were exposed to 5 mmol/1 butyrate 1 through 5 days after plating. Expression profiles of 1,176 genes representing different functional classes in untreated control and butyrate treated VSMCs were compared. A total of 111 genes exhibiting moderate (2.0–5.0 fold to strong (> 5.0 fold) differential expression were identified. Analysis of these genes indicates that butyrate treatment mainly alters the expression of four different functional classes of genes, which include: 43 genes implicated in cell growth and differentiation, 13 genes related to stress response, 11 genes associated with vascular function and 8 genes normally present in neuronal cells. Examination of differentially expressed cell growth and differentiation related genes indicate that butyrate-inhibited VSMC proliferation appears to involve down-regulation of genes that encode several positive regulators of cell growth and up-regulation of some negative regulators of growth or differentiation inducers. Some of the down-regulated genes include proliferating cell nuclear antigen (PCNA), retinoblastoma susceptibility related protein p130 (pRb), cell division control protein 2 homolog (cdc2), cyclin B1, cell division control protein 20 homolog (p55cdc), high mobility group (HMG) 1 and 2 and several others. Whereas the up-regulated genes include cyclin D1, p21WAF1, p14INK4B/p15INK5B, Clusterin, inhibitor of DNA binding 1 (ID1) and others. On the other hand, butyrate-responsive stress-related genes include some of the members of heat shock protein (HSP), glutathione-s-transferase (GST), and glutathione peroxidase (GSH-PXs) and cytochrome P450 (CYP) families. Additionally, several genes related to vascular and neuronal function are also responsive to butyrate treatment. Although involvement of genes that encode stress response, vascular and neuronal functional proteins in cell proliferation is not clear, cDNA expression array data appear to suggest that they may play a role in the regulation of cell proliferation. However, cDNA expression profiles indicate that butyrate-inhibited VSMC proliferation involves combined action of a proportionally large number of both positive and negative regulators of growth, which ultimately causes growth arrest of VSMCs. Furthermore, these butyrate-induced differential gene expression changes are not only consistent with the antiproliferative effect of butyrate but are also in agreement with the roles that these gene products play in cell proliferation.  相似文献   
110.
Oil bodies of liverworts are intracellular organelles bounded by a single unit membrane containing lipophilic globules suspended in a proteinaceous matrix. They are a prominent and highly distinctive organelle uniquely found in liverworts. Although they have been widely used in taxonomy and chemosystematics, and many of their secondary metabolites are known to be bioactive and are considered as potential sources of medicines, their origin, development and function still remain poorly understood. Recently, biochemical studies have indicated that the isoprenoid biosynthetic pathways in liverworts are similar to those of the seed plants and that oil bodies of Marchantia polymorpha contain a protein complex immunologically related to plastid and cytosolic enzymes of isoprenoid synthesis. Cytoplasmic lipid droplets lacking a bounding membrane have recently been recognized as important dynamic organelles playing active roles in cell physiology. Structural proteins, covering the surface of the lipid droplets and preventing them coalescing during desiccation, have been found in seed plants and also in the moss Physcomitrella patens. However, whether liverwort oil bodies play a dynamic role in cell metabolism, in addition to their role as sites of essential oil accumulation and sequestration, has not been formally tested. In this review, we present current knowledge on the oil bodies of liverworts on their origin and development, their role in taxonomy, chemosystematics and potential pharmaceutical applications leading to their functional significance, and we also identify avenues for future studies on this important but long-overlooked organelle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号