首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1779篇
  免费   187篇
  国内免费   117篇
  2083篇
  2024年   7篇
  2023年   27篇
  2022年   56篇
  2021年   42篇
  2020年   47篇
  2019年   73篇
  2018年   90篇
  2017年   58篇
  2016年   52篇
  2015年   62篇
  2014年   126篇
  2013年   181篇
  2012年   85篇
  2011年   82篇
  2010年   99篇
  2009年   106篇
  2008年   93篇
  2007年   107篇
  2006年   77篇
  2005年   77篇
  2004年   65篇
  2003年   49篇
  2002年   52篇
  2001年   36篇
  2000年   22篇
  1999年   28篇
  1998年   17篇
  1997年   23篇
  1996年   27篇
  1995年   16篇
  1994年   19篇
  1993年   15篇
  1992年   16篇
  1991年   11篇
  1990年   11篇
  1989年   7篇
  1988年   8篇
  1987年   8篇
  1986年   8篇
  1985年   11篇
  1984年   20篇
  1983年   8篇
  1982年   14篇
  1981年   11篇
  1980年   4篇
  1979年   7篇
  1978年   4篇
  1977年   6篇
  1976年   6篇
  1973年   2篇
排序方式: 共有2083条查询结果,搜索用时 0 毫秒
31.
Comment on: Liu J, et al. Cell Cycle 2012; 11:2643-9.  相似文献   
32.
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.  相似文献   
33.
This study reports a comparative analysis of the topological properties of inner cavities and the intrinsic dynamics of non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. The two proteins belong to the 3/3 globin fold and have a sequence identity of about 60%. However, it is widely assumed that they have distinct physiological roles. In order to investigate the structure–function relationships in these proteins, we have examined the bis-histidyl and ligand-bound hexacoordinated states by atomistic simulations using in silico structural models. The results allow us to identify two main pathways to the distal cavity in the bis-histidyl hexacoordinated proteins. Nevertheless, a larger accessibility to small gaseous molecules is found in AHb2. This effect can be attributed to three factors: the mutation Leu35(AHb1) → Phe32(AHb2), the enhanced flexibility of helix B, and the more favorable energetic profile for ligand migration to the distal cavity. The net effect of these factors would be to facilitate the access of ligands, thus compensating the preference for the fully hexacoordination of AHb2, in contrast to the equilibrium between hexa- and pentacoordinated species in AHb1. On the other hand, binding of the exogenous ligand introduces distinct structural changes in the two proteins. A well-defined tunnel is formed in AHb1, which might be relevant to accomplish the proposed NO detoxification reaction. In contrast, no similar tunnel is found in AHb2, which can be ascribed to the reduced flexibility of helix E imposed by the larger number of salt bridges compared to AHb1. This feature would thus support the storage and transport functions proposed for AHb2. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   
34.
In our previous work, we proposed that desolvation and resolvation of the binding sites of proteins can serve as the slowest steps during ligand association and dissociation, respectively, and tested this hypothesis on two protein‐ligand systems with known binding kinetics behavior. In the present work, we test this hypothesis on another kinetically‐determined protein‐ligand system—that of p38α and eight Type II BIRB 796 inhibitor analogs. The kon values among the inhibitor analogs are narrowly distributed (104kon ≤ 105 M?1 s?1), suggesting a common rate‐determining step, whereas the koff values are widely distributed (10?1koff ≤ 10?6 s?1), suggesting a spectrum of rate‐determining steps. We calculated the solvation properties of the DFG‐out protein conformation using an explicit solvent molecular dynamics simulation and thermodynamic analysis method implemented in WaterMap to predict the enthalpic and entropic costs of water transfer to and from bulk solvent incurred upon association and dissociation of each inhibitor. The results suggest that the rate‐determining step for association consists of the transfer of a common set of enthalpically favorable solvating water molecules from the binding site to bulk solvent. The rate‐determining step for inhibitor dissociation consists of the transfer of water from bulk solvent to specific binding site positions that are unfavorably solvated in the apo protein, and evacuated during ligand association. Different sets of unfavorable solvation are evacuated by each ligand, and the observed dissociation barriers are qualitatively consistent with the calculated solvation free energies of those sets.  相似文献   
35.
Summary

Combined mild centrifugation and uv irradiation of Chironomus embryos modified the developmental types expected from centrifugation alone, somewhat differently from the combined strong centrifugation and uv irradiation of Smittia embryos. The modifications changed with the stages irradiated. The change caused by anterior irradiation may depend on whether or not a part of the cytoplasmic zone is irradiated simultaneously with the anterior yolky end; because most of the cytoplasm lies in the posterior half of egg at early irradiation, while the tip of the cytoplasm redistributes near the anterior end by the late irradiation. Early uv irradiation of the anterior end of centrifuged eggs, causing the formation of a double abdomen (DA) or an inverted embryo, is not photoreversible, while the uv damage to the anterior end of uncentrifuged eggs, inducing DA, is. These facts suggest that there is another photoirreversible uv target in addition to the photoreversible target for DA induction or the anterior determinant shown in Smittia. Other changes, such as the induction of a double cephalon by late irradiation of the centrifuged egg, are photoreversible, but in an unusual way in that the level of photorecovery is similar to the result of incubation in the dark after early irradiation, and not to that of the centrifuged controls. These modified results were then compared with those for Smittia embryos.  相似文献   
36.
The Drosophila sponge (spg)/CG31048 gene belongs to the dedicator of cytokinesis (DOCK) family genes that are conserved in a wide variety of species. DOCK family members are known as DOCK1–DOCK11 in mammals. Although DOCK1 and DOCK2 involve neurite elongation and immunocyte differentiation, respectively, the functions of other DOCK family members are not fully understood. Spg is a Drosophila homolog of mammalian DOCK3 and DOCK4. Specific knockdown of spg by the GMR-GAL4 driver in eye imaginal discs induced abnormal eye morphology in adults. To mark the photoreceptor cells in eye imaginal discs, we used a set of enhancer trap strains that express lacZ in various sets of photoreceptor cells. Immunostaining with anti-Spg antibodies and anti-lacZ antibodies revealed that Spg is localized mainly in R7 photoreceptor cells. Knockdown of spg by the GMR-GAL4 driver reduced signals of R7 photoreceptor cells, suggesting involvement of Spg in R7 cell differentiation. Furthermore, immunostaining with anti-dpERK antibodies showed the level of activated ERK signal was reduced extensively by knockdown of spg in eye discs, and both the defects in eye morphology and dpERK signals were rescued by over-expression of the Drosophila raf gene, a component of the ERK signaling pathway. Furthermore, the Duolink in situ Proximity Ligation Assay method detected interaction signals between Spg and Rap1 in and around the plasma membrane of the eye disc cells. Together, these results indicate Spg positively regulates the ERK pathway that is required for R7 photoreceptor cell differentiation and the regulation is mediated by interaction with Rap1 during development of the compound eye.  相似文献   
37.
The formation of textures in DNA films with LiCl, NaCl, KCl, RbCl, and CsCl salts has been studied. The films are prepared by evaporation of water solution with highly polymerized calf thymus DNA and excess salt of specific type. For DNA solution with 10 mM concentration of NaCl, KCl, and RbCl the films with dendritic textures have been obtained, whereas in case of CsCl the textures in the films appear only at 30 mM concentration of excess salt in the initial solution. In the solution with LiCl, the textures in DNA films have not been observed within the whole range of concentration of excess salt under consideration. The analysis of parameters of DNA films with different salts has showed that evaporation of solution leads to crystallization of salt ions on DNA macromolecule and formation of DNA‐salt complexes. Electrostatic energy of the system of crystalline ordered ions and charges of DNA chains has been estimated to study the stability of DNA‐salt complexes. The results obtained for different salts have been showed that the presence of DNA macromolecule enhances crystallization as compared with solution without DNA. The property of excess salt to form the crystalline structures has been found to decrease in the following order: KCl > NaCl > RbCl > CsCl > LiCl. The results of estimation are in good agreement with the experimentally observed dependence of texture formation on excess salt type. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 508–516, 2013.  相似文献   
38.
O-mannosylation is a vital protein modification. In humans, defective O-mannosylation of α-dystroglycan results in severe congenital muscular dystrophies. However, other proteins bearing this modification in vivo are still largely unknown. Here, we describe a highly reliable method combining glycosidase treatment with LC–MS analyses to identify mammalian O-mannosylated proteins from tissue sources. Our workflow identified T-cadherin (H-cadherin, CDH13) as a novel O-mannosylated protein. In contrast to known O-mannosylated proteins, single mannose residues (Man-α-Ser/Thr) are attached to this cell adhesion molecule. Conserved O-glycosylation sites in T-, E- and N-cadherins from different species, point to a general role of O-mannosyl glycans for cadherin function.  相似文献   
39.
40.
G-protein coupled receptors (GPCRs) form a ternary complex of agonist, receptor and G-proteins during primary signal transduction at the cell membrane. Downstream signalling is thought to be preceded by the process of dissociation of Gα and Gβγ subunits, thus exposing new surfaces to interact with downstream effectors. We demonstrate here for the first time, the dissociation of heterotrimeric G-protein subunits (i.e., Gα and Gβγ) following agonist-induced GPCR (α2A-adrenergic receptor; α2A-AR) activation in a cell-free assay system. α2A-AR membranes were reconstituted with the G-proteins (±hexahistidine-tagged) Gαi1 and Gβ1γ2 and functional signalling was determined following activation of the reconstituted receptor:G-protein complex with the potent agonist UK-14304, and [35S]GTPγS. In the presence of Ni2+-coated agarose beads, the activated his-tagged Gαi1his-[35S]GTPγS complex was captured on the Ni2+-presenting surface. When his-tagged Gβ1γ2 (Gβ1γ2his) was used with Gαi1, the [35S]GTPγS-bound Gαi1 was not present on the Ni2+-coated beads, but rather, it was separated from the β1γ2(his)-beads, demonstrating receptor-induced dissociation of Gα and Gβγ subunits. Treatment of the reconstituted α2A-AR membranes containing Gβ1γ2his:Gαi1 with imidazole confirmed the specificity for the Ni2+:G-protein surface dissociation of Gαi1 from Gβ1γ2his. These data demonstrate for the first time, the complete dissociation of the G-protein subunits and extend observations on the role of G-proteins in the assembly and disassembly of the ternary complex in the primary events of GPCR signalling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号