首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   815篇
  免费   46篇
  国内免费   28篇
  2023年   25篇
  2022年   17篇
  2021年   30篇
  2020年   16篇
  2019年   26篇
  2018年   30篇
  2017年   23篇
  2016年   7篇
  2015年   21篇
  2014年   25篇
  2013年   41篇
  2012年   36篇
  2011年   39篇
  2010年   24篇
  2009年   32篇
  2008年   33篇
  2007年   38篇
  2006年   31篇
  2005年   25篇
  2004年   41篇
  2003年   25篇
  2002年   28篇
  2001年   24篇
  2000年   17篇
  1999年   21篇
  1998年   23篇
  1997年   18篇
  1996年   30篇
  1995年   16篇
  1994年   11篇
  1993年   22篇
  1992年   13篇
  1991年   7篇
  1990年   8篇
  1989年   3篇
  1988年   11篇
  1987年   7篇
  1986年   9篇
  1985年   11篇
  1984年   9篇
  1983年   8篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有889条查询结果,搜索用时 15 毫秒
41.
The number of c-fos protein-like immunoreactive (Fos-LI) cells in the gracile nucleus was determined after electrical stimulation at Aα/Aβ-fiber strength of the normal and of the previously injured sciatic nerve in adult rats. No Fos-LI cells were seen after electrical stimulation of the noninjured sciatic nerve, or after sciatic nerve injury without electrical stimulation. However, stimulation 21 days after sciatic nerve transection resulted in numerous Fos-LI cells in the ipsilateral gracile nucleus. Combined Fos immunocytochemistry and retrograde labeling from the thalamus showed that the majority (76%; range = 70–80%) of the cells in the gracile nucleus that expressed Fos-LI after nerve injury projected to the thalamus. The results indicate that morphological, biochemical, and physiological alterations in primary sensory central endings and second-order neurons, which have earlier been demonstrated in the dorsal column nuclei after peripheral nerve injury, are accompanied by changes in the c-fos gene activation pattern after stimulation of the injured sciatic nerve. A substantial number of the c-fos-expressing neurons project to the thalamus.  相似文献   
42.
Two series of experiments were performed to assess the effects of stimulus velocity on human subjects' perception of the distance traversed by a moving tactile stimulus. In all experiments, constant-velocity stimuli were applied to the dorsal surface of the left forearm; velocities ranging between 1.0 and 256 cm/sec were used. In some experiments the stimuli moved from distal to proximal over the skin, and in others they moved from proximal to distal. The length of skin contacted by the moving stimulus was defined by a plate having an aperture of 4.0 × 0.5 cm.

In the first series of experiments, subjects were required to compare the distance traversed by a test stimulus delivered 2 sec after a standard stimulus, and also to report the on-locus and the off-locus of the brushing stimulus. In the second series of experiments, the subjects rated the perceived distance on the skin using a free-magnitude-estimation procedure. The data from both series of experiments defined the same relationship between stimulus velocity and perceived stimulus distance. More specifically, although the length of skin contacted by the stimulus was the same at all velocities, subjects' estimates of stimulus distance decreased with increasing stimulus velocity. In addition, the function relating estimates of stimulus distance to velocity was flat for velocities between 5 and 20 cm/sec, but possessed an appreciable negative slope at lower and higher velocities.

It is interesting that the plateau of the relationship between perceived stimulus distance and velocity occurred within the range of velocities that human subjects employ to scan textured surfaces; it also corresponded precisely with the range of stimulus velocities at which the directional sensitivity of somatosensory cortical neurons and human subjects is optimal.  相似文献   
43.
Prior intracellular recording and labeling experiments have documented local-circuit and projection neurons in the spinal trigeminal (V) nucleus with axons that arborize in more rostral and caudal spinal trigeminal subnuclei and nucleus principalis. Anterograde tracing studies were therefore carried out to assess the origin, extent, distribution, and morphology of such intersubnuclear axons in the rat trigeminal brainstem nuclear complex (TBNC). Phaseolus vulgaris leucoagglutinin (PHA-L) was used as the anterograde marker because of its high sensitivity and the morphological detail provided. Injections restricted to TBNC subnucleus caudalis resulted in dense terminal labeling in each of the more rostral ipsilateral subnuclei. Subnucleus interpolaris projected ipsilaterally and heavily to magnocellular portions of subnucleus caudalis, as well as subnucleus oralis and nucleus principalis. Nucleus principalis, on the other hand, had only a sparse projection to each of the caudal ipsilateral subnuclei. Intersubnuclear axons most frequently traveled in the deep bundles within the TBNC, the V spinal tract, and the reticular formation. They gave rise to a number of circumscribed, highly branched arbors with many boutons of the terminal and en passant types.

Retrograde single- or multiple-labeling experiments assessed the cells giving rise to TBNC intersubnuclear collaterals. Horseradish peroxidase (HRP) and/or fluorescent tracer injections into the thalamus, colliculus, cerebellum, nucleus principalis, and/or subnucleus caudalis revealed large numbers of neurons in subnuclei caudalis, interpolaris, and oralis projecting to the region of nucleus principalis. Cells projecting to more caudal spinal trigeminal regions were most numerous in subnuclei interpolaris and oralis. Some cells in lamina V of subnucleus caudalis and in subnuclei interpolaris and oralis projected to thalamus and/or colliculus, as well as other TBNC subnuclei. Such collateral projections were rare in nucleus principalis and more superficial laminae of subnucleus caudalis. TBNC cells labeled by cerebellar injections were not double-labeled by tracer injections into the thalamus, colliculus, or TBNC.

These findings lend generality to currently available data obtained with intracellular recording and HRP labeling methods, and suggest that most intersubnuclear axons originate in TBNC local-circuit neurons, though some originate in cells that project to midbrain and/or diencephalon.  相似文献   
44.
Objective—The primary nerves innervating the female genitalia are the dorsal nerve of the clitoris (DNC) and the perineal nerve, which innervate the clitoris and the external genitalia/distal vagina, respectively. We describe two novel electrodiagnostic techniques for evaluating the integrity of these female genital somatosensory pathways.

Subjects and methods—Seventy-seven healthy women (mean age 29.3 years) were enrolled for this study. We performed DNC somatosensory evoked potentials (SEPs), stimulating through self-adhesive disk electrodes on either side of the clitoris. Perineal nerve SEPs were evoked through a vaginal probe. Cortical responses were measured through cup electrodes affixed to the scalp at Cpz and Fpz. Stimulus parameters were duration 0.1?ms, frequency 4.1?Hz, filters 5–5,000?Hz, at three times sensory threshold.

Results—DNC and perineal nerve SEPs from both the right and left sides were reproducible and easily discerned. The mean P1 latencies were: right DNC 39.4?ms (SD 2.8?ms), left DNC 39.3?ms (SD 3.3?ms), right perineal nerve 37.8?ms (SD 3.4?ms), left perineal nerve 37.6?ms (SD 3.1?ms). We recorded SEP responses from 90 to 92% of subjects for the DNC, and 69% for the perineal nerve.

Conclusions—We are able to evoke somatosensory potentials from the four primary somatic nerves that mediate female genital cutaneous sensation. In healthy subjects, the DNC responses are robust and maintain laterality. The perineal nerve responses are less consistently obtained, but when recorded, are easily discerned. These preliminary data provide a foundation from which to study female genital innervation, particularly as it applies to sexual function.  相似文献   
45.
Social interest reflects the motivation to approach a conspecific for the assessment of social cues and is measured in rats by the amount of time spent investigating conspecifics. Virgin female rats show lower social interest towards unfamiliar juvenile conspecifics than virgin male rats. We hypothesized that the neuropeptide oxytocin (OT) may modulate sex differences in social interest because of the involvement of OT in pro-social behaviors. We determined whether there are sex differences in OT system parameters in the brain and whether these parameters would correlate with social interest. We also determined whether estrus phase or maternal experience would alter low social interest and whether this would correlate with changes in OT system parameters. Our results show that regardless of estrus phase, females have significantly lower OT receptor (OTR) binding densities than males in the majority of forebrain regions analyzed, including the nucleus accumbens, caudate putamen, lateral septum, bed nucleus of the stria terminalis, medial amygdala, and ventromedial hypothalamus. Interestingly, male social interest correlated positively with OTR binding densities in the medial amygdala, while female social interest correlated negatively with OTR binding densities in the central amygdala. Proestrus/estrus females showed similar social interest to non-estrus females despite increased OTR binding densities in several forebrain areas. Maternal experience had no immediate or long-lasting effects on social interest or OT brain parameters except for higher OTR binding in the medial amygdala in primiparous females. Together, these findings demonstrate that there are robust sex differences in OTR binding densities in multiple forebrain regions of rats and that OTR binding densities correlate with social interest in brain region- and sex-specific ways.  相似文献   
46.
It is a well‐known fact, that there is a close interconnection between vascular and neural structures in both embryonic development and postnatal life. Different models have been employed to dissect the mechanisms of these interactions, ranging from in vitro systems (e.g., co‐culture of neural and endothelial cells) to in vivo imaging of central neural system recovery in laboratory animals after artificially induced trauma. Nevertheless, most of these models have serious limitations. Here, we describe an ex vivo model, representing an organotypic co‐culture of aortic fragments (AF) with longitudinal slices of mouse neonatal spinal cord (SC) or dorsal root ganglia (DRG). The samples were co‐cultured in a medium adapted for SC tissue and lacking any pro‐angiogenic or neurotrophic growth factors. It was found, that cultivation of AFs in the SC injury zone (transversal dissection of a SC slice) resulted in the initiation of active aortic sprouting. Remarkably, the endothelial cells exiting the AFs never invaded the SC tissue, concentrating in a nearby area (negative taxis). In contrast, the DRGs, while also promoting the sprouting, were a target of active endothelial CD31+ cell invasion (positive taxis). Thus, the tissues of both central and peripheral nervous systems have a prominent positive effect on aortic sprouting, while the vector of endothelial cell expansion is strictly nervous‐tissue‐type dependent. The ex vivo AF co‐culture with SC or DRG appeared to be a useful and promising model for a further endeavor into the mechanisms driving the complex interactions between neural and endothelial tissues.  相似文献   
47.
48.
The upregulation of nociceptive ion channels expressed in dorsal root ganglia (DRG) contributes to the development and retaining of diabetic pain symptoms. The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a component extracted from various fruits and vegetables and exerts anti-inflammatory, analgesic, anticarcinogenic, antiulcer, and antihypertensive effects. However, the exact mechanism underlying quercetin's analgesic action remains poorly understood. The aim of this study was to investigate the effects of quercetin on diabetic neuropathic pain related to the P2X4 receptor in the DRG of type 2 diabetic rat model. Our data showed that both mechanical withdrawal threshold and thermal withdrawal latency in diabetic rats treated with quercetin were higher compared with those in untreated diabetic rats. The expression levels of P2X4 messenger RNA and protein in the DRG of diabetic rats were increased compared with the control rats, while quercetin treatment significantly inhibited such enhanced P2X4 expression in diabetic rats. The satellite glial cells (SGCs) enwrap the neuronal soma in the DRG. Quercetin treatment also lowered the elevated coexpression of P2X4 and glial fibrillary acidic protein (a marker of SGCs) and decreased the upregulation of phosphorylated p38 mitogen-activated protein kinase (p38MAPK) in the DRG of diabetic rats. Quercetin significantly reduced the P2X4 agonist adenosine triphosphate-activated currents in HEK293 cells transfected with P2X4 receptors. Thus, our data demonstrate that quercetin may decrease the upregulation of the P2X4 receptor in DRG SGCs, and consequently inhibit P2X4 receptor-mediated p38MAPK activation to relieve the mechanical and thermal hyperalgesia in diabetic rats.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号