首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1654篇
  免费   97篇
  国内免费   24篇
  2024年   4篇
  2023年   24篇
  2022年   27篇
  2021年   60篇
  2020年   45篇
  2019年   47篇
  2018年   41篇
  2017年   32篇
  2016年   37篇
  2015年   52篇
  2014年   63篇
  2013年   99篇
  2012年   61篇
  2011年   68篇
  2010年   73篇
  2009年   62篇
  2008年   88篇
  2007年   76篇
  2006年   71篇
  2005年   66篇
  2004年   76篇
  2003年   75篇
  2002年   66篇
  2001年   65篇
  2000年   22篇
  1999年   25篇
  1998年   21篇
  1997年   20篇
  1996年   21篇
  1995年   35篇
  1994年   25篇
  1993年   31篇
  1992年   23篇
  1991年   23篇
  1990年   25篇
  1989年   15篇
  1988年   14篇
  1987年   10篇
  1986年   14篇
  1985年   12篇
  1984年   10篇
  1983年   11篇
  1982年   11篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1973年   1篇
排序方式: 共有1775条查询结果,搜索用时 46 毫秒
101.
The relationship between glutamate and dopamine release, apoptosis and ischaemic damage was studied following induction of transient focal cerebral ischaemia under normothermic (37 degrees C) and postischaemic (resuscitative) mild hypothermic (34 degrees C for 2 h) conditions in sevoflurane anaesthetized male Wistar rats. Focal ischaemia was induced by infusing endothelin-1 adjacent to the middle cerebral artery. In vivo microdialysis was used to sample glutamate and dopamine from striatum and parietal cortex of the ipsilateral hemisphere. The volume of ischaemic damage and the degree of apoptosis were determined 24 h after the insult. In both striatum and cortex of the normothermic group an initial increase in extracellular glutamate and dopamine levels following endothelin-1 infusion was observed. Striatal glutamate levels remained enhanced (250% of baseline) throughout the experiment, while the other neurotransmitter levels returned to baseline values. Hypothermia significantly attenuated the endothelin-1 induced glutamate release in the striatum. It also reduced apoptosis and infarct volume in the cortex. These results indicate that: (i) postischaemic mild hypothermia exerts its neuroprotective effect by inhibiting apoptosis in the ischaemic penumbral region; and (ii) this effect is not associated with an attenuation of glutamate or dopamine release in the cortex.  相似文献   
102.
Oxidized metabolites of dopamine, known as dopamine quinone derivatives, are thought to play a pivotal role in the degeneration of dopaminergic neurons. Although such quinone derivatives are usually produced via the autoxidation of catecholamines, tyrosinase, which is a key enzyme in melanin biosynthesis via the production of DOPA and subsequent molecules, may potentially accelerate the induction of catecholamine quinone derivatives by its oxidase activity. In the present study, we developed neuronal cell lines in which the expression of human tyrosinase was inducible. Overexpression of tyrosinase in cultured cell lines resulted in (i) increased intracellular dopamine content; (ii) induction of oxidase activity not only for DOPA but also for dopamine; (iii) formation of melanin pigments in cell soma; and (iv) increased intracellular reactive oxygen species. Interestingly, the expressed tyrosinase protein was initially distributed in the entire cytoplasm and then accumulated to form catecholamine-positive granular structures by 3 days after the induction. The granular structures consisted of numerous rounded, dark bodies of melanin pigments and were largely coincident with the distribution of lysosomes. This cellular model that exhibits increased dopamine production will provide a useful tool for detailed analyses of the potentially noxious effects of oxidized catecholamine metabolites.  相似文献   
103.
Nigrostriatal dopaminergic neurons release dopamine from dendrites in substantia nigra and axon terminals in striatum. The cellular mechanisms for somatodendritic and axonal dopamine release are similar, but somatodendritic and nerve terminal dopamine release may not always occur in parallel. The current studies used in vivo microdialysis to simultaneously measure changes in dendritic and nerve terminal dopamine efflux in substantia nigra and ipsilateral striatum respectively, following intranigral application of various drugs by reverse dialysis through the nigral probe. The serotonin releasers (+/-)-fenfluramine (100 micro m) and (+)-fenfluramine (100 micro m) significantly increased dendritic dopamine efflux without affecting extracellular dopamine in striatum. The non-selective serotonin receptor agonist 1-(m-chlorophenyl)-piperazine (100 micro m) elicited a similar pattern of dopamine release in substantia nigra and striatum. NMDA (33 micro m) produced an increase in nigral dopamine of a similar magnitude to mCPP or either fenfluramine drug. However, NMDA also induced a concurrent increase in striatal dopamine. The D2 agonist quinpirole (100 micro m) had a parallel inhibitory effect on dopamine release from dendritic and terminal sites as well. Taken together, these data suggest that serotonergic afferents to substantia nigra may evoke dendritic dopamine release through a mechanism that is uncoupled from the impulse-dependent control of nerve terminal dopamine release.  相似文献   
104.
105.
The Neurobiology of Dopamine Signaling   总被引:5,自引:0,他引:5  
The biochemistry of synaptic transmission, especially the neurobiology of dopamine signaling, is discussed.  相似文献   
106.
Experimental evidence suggests that the maintenance of an item in working memory is achieved through persistent activity in selective neural assemblies of the cortex. To understand the mechanisms underlying this phenomenon, it is essential to investigate how persistent activity is affected by external inputs or neuromodulation. We have addressed these questions using a recurrent network model of object working memory. Recurrence is dominated by inhibition, although persistent activity is generated through recurrent excitation in small subsets of excitatory neurons.Our main findings are as follows. (1) Because of the strong feedback inhibition, persistent activity shows an inverted U shape as a function of increased external drive to the network. (2) A transient external excitation can switch off a network from a selective persistent state to its spontaneous state. (3) The maintenance of the sample stimulus in working memory is not affected by intervening stimuli (distractors) during the delay period, provided the stimulation intensity is not large. On the other hand, if stimulation intensity is large enough, distractors disrupt sample-related persistent activity, and the network is able to maintain a memory only of the last shown stimulus. (4) A concerted modulation of GABA A and NMDA conductances leads to a decrease of spontaneous activity but an increase of persistent activity; the enhanced signal-to-noise ratio is shown to increase the resistance of the network to distractors. (5) Two mechanisms are identified that produce an inverted U shaped dependence of persistent activity on modulation. The present study therefore points to several mechanisms that enhance the signal-to-noise ratio in working memory states. These mechanisms could be implemented in the prefrontal cortex by dopaminergic projections from the midbrain.  相似文献   
107.
Prenatal stress greatly influences the ability of an individual to manage stressful events in adulthood. Such vulnerability may result from abnormalities in the development and integration of forebrain dopaminergic and glutamatergic projections during the prenatal period. In this study, we assessed the effects of prenatal stress on the expression of selective dopamine and glutamate receptor subtypes in the adult offsprings of rats subjected to repeated restraint stress during the last week of pregnancy. Dopamine D2-like receptors increased in dorsal frontal cortex (DFC), medial prefrontal cortex (MPC), hippocampal CA1 region and core region of nucleus accumbens (NAc) of prenatally stressed rats compared to control subjects. Glutamate NMDA receptors increased in MPC, DFC, hippocampal CA1, medial caudate-putamen, as well as in shell and core regions of NAc. Group III metabotropic glutamate receptors increased in MPC and DFC of prenatally stressed rats, but remained unchanged in all other regions examined. These results indicate that stress suffered during the gestational period has long lasting effects that extend into the adulthood of prenatally stressed offsprings. Changes in dopamine and glutamate receptor subtype levels in different forebrain regions of adult rats suggest that the development and formation of the corticostriatal and corticolimbic pathways may be permanently altered as a result of stress suffered prenatally. Maldevelopment of these pathways may provide a neurobiological substrate for the development of schizophrenia and other idiopathic psychotic disorders.  相似文献   
108.
Although it is well known that plasma concentration of prolactin (PRL) increases during aging in rats, how the anterior pituitary (AP) aging per se affects PRL secretion remains obscure. The objectives of this study were to determine if changes in the pituitary PRL responsiveness to acetylcholine (ACh; a paracrine factor in the AP), as compared with that to other PRL stimulators or inhibitors, contribute to the known age-related increase in PRL secretion, and if protein kinase C (PKC) is involved. We also determined if replenishment with aging-declined hormones such as estrogen/thyroid hormone influences the aging-caused effects on pituitary PRL responses. AP cells were prepared from old (23-24-month-old) as well as young (2-3-month-old) ovariectomized rats. Cells were pretreated for 5 days with diluent or 17beta-estradiol (E(2); 0.6 nM) in combination with or without triiodothyronine (T(3); 10 nM). Then, cells were incubated for 20 min with thyrotropin-releasing hormone (TRH; 100 nM), angiotensin II (AII; 0.2-20 nM), vasoactive intestinal peptide (VIP; 10(-9)-10(-5) M), dopamine (DA; 10(-9)-10(-5) M), or ACh (10(-7)-10(-3) M). Cells were also challenged with ACh, TRH, or phorbol 12-myristate 13-acetate (PMA; 10(-6) M) following PKC depletion by prolonged PMA (10(-6) M for 24 h) pretreatment. We found that estrogen priming of AP cells could reverse the aging-caused effects on pituitary PRL responses to AII and DA. In hormone-replenished cells aging enhanced the stimulation of PRL secretion by TRH and PMA, but not by AII and VIP. Aging also reduced the responsiveness of cells to ACh and DA in suppressing basal PRL secretion, and attenuated ACh inhibition of TRH-induced PRL secretion. Furthermore, ACh suppressed TRH-induced PRL secretion mainly via the PMA-sensitive PKC in the old AP cells, but via additional mechanisms in young AP cells. On the contrary, basal PRL secretion was PKC (PMA-sensitive)-independent in the old AP cells, but dependent in the young AP cells. Taken together, these results suggest differential roles of PMA-sensitive PKC in regulating basal and ACh-regulated PRL responses in old versus young AP cells. The persistent aging-induced differences in AP cell responsiveness to ACh, DA, TRH, and PMA following hormone (E(2)/T(3)) replenishment suggest an intrinsic pituitary change that may contribute, in part, to the elevated in vivo PRL secretion observed in aged rats.  相似文献   
109.
Dopamine transport function is elevated in cocaine users   总被引:8,自引:0,他引:8  
Dopaminergic transmission has been suggested to be a primary mechanism mediating reinforcement, withdrawal and craving associated with psychostimulant addiction. Pyscho-stimulants attenuate dopamine transporter (DAT) clearance efficiency, resulting in a net increase in synaptic dopamine levels. Re-uptake rate is determined by the number of functional DAT molecules at the membrane surface. Previous in vivo imaging studies in humans and in vitro studies in post-mortem human brain have demonstrated that chronic cocaine abuse results in a neuroadaptive increase in DAT-binding site density in the limbic striatum. Whether this increase in DAT availability represents an increase in the functional activity of the transporter is unknown. Here, we present evidence that DAT function is elevated by chronic cocaine abuse. The effect of increasing post-mortem interval on the functional viability of synaptosomes was modeled in the baboon brain. Baboon brains sampled under conditions similar to human brain autopsies yielded synaptosomal preparations that were viable up to 24 h post-mortem. Dopamine (DA) uptake was elevated twofold in the ventral striatum from cocaine users as compared to age-matched drug-free control subjects. The levels of [3H]DA uptake were not elevated in victims of excited cocaine delirium, who experienced paranoia and marked agitation prior to death. In keeping with the increase in DAT function, [3H]WIN 35,428 binding was increased in the cocaine users, but not in the victims of excited delirium. These results demonstrate that DA uptake function assayed in cryopreserved human brain synaptosomes is a suitable approach for testing hypotheses of the mechanisms underlying human brain disorders and for studying the actions of addictive drugs in man.  相似文献   
110.
Beta-carbolines have been suggested to be involved in the pathogenesis of Parkinson's disease as a result of their structural similarity to the neurotoxin N -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The chloral-derived beta-carboline derivative 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) causes cell loss in neuronal and glial cell cultures and induces a slowly developing neurodegenerative process in rats. In our experiments, effects of TaClo and its derivatives 2-methyl-TaClo (2-Me-TaClo), and 1-dichloromethylene-1,2,3,4-tetrahydro-beta-carboline (1-CCl(2) -THbetaC) on tyrosine hydroxylase (TH) activity were investigated in TH assays using homogenate preparations of the rat nucleus accumbens and recombinant human TH (hTH1). TH activity was determined in vitro by measuring l-DOPA production with HPLC-ECD. Using homogenate preparations, TaClo, 2-Me-TaClo, and 1-CCl(2) -THbetaC inhibited TH in concentrations of 0.1 mm, while 1-CCl(2) -THbetaC in low concentrations enhanced TH activity. When TH was activated by PACAP-27, TaClo, 2-Me-TaClo, or 1-CCl(2) -THbetaC also inhibited activated enzyme activity in high concentrations. However, in the case of 2-Me-TaClo and 1-CCl(2) -THbetaC a biphasic effect was observed with a marked increase of TH activity in the nanomolar range. In our experiments using recombinant hTH1, TaClo, 2-Me-TaClo, or 1-CCl(2) -THbetaC did not modify enzyme activity. After activation of hTH1 by PKA all the tetrahydro-beta-carbolines investigated in this study decreased l-DOPA formation. We suggest that these beta-carbolines modulate dopamine synthesis by interacting with a protein kinase TH-activating system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号