首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3070篇
  免费   221篇
  国内免费   222篇
  2023年   42篇
  2022年   37篇
  2021年   74篇
  2020年   74篇
  2019年   86篇
  2018年   84篇
  2017年   74篇
  2016年   105篇
  2015年   89篇
  2014年   197篇
  2013年   220篇
  2012年   138篇
  2011年   135篇
  2010年   136篇
  2009年   162篇
  2008年   148篇
  2007年   165篇
  2006年   150篇
  2005年   136篇
  2004年   113篇
  2003年   98篇
  2002年   94篇
  2001年   82篇
  2000年   61篇
  1999年   66篇
  1998年   54篇
  1997年   50篇
  1996年   46篇
  1995年   63篇
  1994年   37篇
  1993年   38篇
  1992年   37篇
  1991年   27篇
  1990年   32篇
  1989年   32篇
  1988年   35篇
  1987年   33篇
  1986年   28篇
  1985年   29篇
  1984年   37篇
  1983年   26篇
  1982年   16篇
  1981年   30篇
  1980年   20篇
  1979年   22篇
  1978年   8篇
  1977年   11篇
  1976年   7篇
  1974年   10篇
  1973年   6篇
排序方式: 共有3513条查询结果,搜索用时 293 毫秒
31.
Summary Many neurones are extremely invaginated and possess branching processes, axons and dendrites. In general, they are surrounded by a restricted diffusion space. Many of these cells exhibit large, slow potential changes during the passage of current across their membranes. Whenever currents cross membranes separating aqueous solutions, differences in transport numbers of the major permeant ions give rise to local concentration changes of these ions adjacent to the membranes, which will result in various electrical and osmotic effects. These transport number effects are expected to be enhanced by the presence of membrane invaginations. Dendrites are equivalent to reversed invaginations and there should be significant changes in concentrations of permeant ions within them. In general, the effects of such changes on the electrical response of a cell will be greater when the concentration of a major permeant ion is low. The effects have been modelled in terms of two nondimensional parameters: the invagination transport number parameter and the relative area occupied by the invaginations A. If these two parameters are known, the magnitudes and time course of the slow potential changes can immediately be estimated and the time course converted to real time, if the length of the invaginations (l) and ionic diffusion coefficient (D) within them are also known. Both analytical and numerical solutions have been given and predictions compared. It is shown that in the case of large currents and potentials the analytical solution predictions will underestimate the magnitudes and rates of onset of the voltage responses. The relative magnitude of the transport number effect within the invaginations (or dendrites) and other transport number contributions to slow potential changes have also been assessed and order-of-magnitude values of these are estimated for some biological data.  相似文献   
32.
Abstract: The number of catalytic subunits of purified bovine nucleus caudatus acetylcholinesterase (E.C. 3.1.1.7) has been determined by active site labelling with [3H]diisopropyl fluorophosphate ([3H]DFP). The 10.5 S, 16 S, and 20 S forms were estimated to contain two, four, and six active sites, respectively, per molecule. A 4.8 S form, which showed a weak amphiphile-dependent activity behavior, was obtained by selective proteolytic digestion with pronase. The inability of the purified 4.8 S form to aggregate after detergent removal, and the molecular mass in the range of 130-165 kD under nondenaturating conditions, indicate that this form is a dimeric form, lacking those hydrophobic regions responsible for aggregation.  相似文献   
33.
A brief survey is presented on fossil reproductive structures of early Angiosperms from the Lower and mid-Cretaceous and at the same time on the reproductive structures of those extant Angiosperms which resemble most closely these fossils and which seem to be especially primitive also on other grounds: a first group (Degeneriaceae, Himantandraceae, Eupomatiaceae, Austrobaileyaceae) possessing relatively complicated and conspicuous flowers with elaborated inner staminodes, a second group (Chloranthaceae, Trimeniaceae, Amborellaceae) possessing small and relatively simple, inconspicuous flowers with peculiar features in the carpels, and a third group (Winteraceae) possessing flowers with unusual variability in organ number and size. The three groups exhibit a certain diversity in pollination biology, although cantharophily seems to prevail, however different the cantharophily character syndromes may be between the groups. In the extant primitiveMagnoliidae variability occurs on other morphological levels than in the higher advanced Angiosperms. This has to be taken into consideration in evaluations of the systematic relationships of the various groups of theMagnoliidae. Presumably often their relationships are closer than it may appear at first sight. This is also true for the three groups here discussed.  相似文献   
34.
Meiosis and mitosis are described in cultivatedCrocus sativus of Iran. This indicates that this species is an autotriploid and sterile. Karyotype analysis, rare inversions, laggard chromosomes and distribution of chromosomes in the first anaphase are described, and the reasons for its sterility are given.  相似文献   
35.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):443-451
Redox titration of the electrochromic carotenoid band shift, detected at 50 μs after a saturating actinic flash, in spinach chloroplasts, shows that only one electron acceptor in Photosystem II participates in a transmembrane primary electron transfer. This species, the primary quinone acceptor, Q, shows only one midpoint potential (Em,7.5) of approx. 0 V and is undoubtedly equivalent to the fluorescence quencher, QH. A second titration wave is observed at low potential (Em,7.5 ? ? 240 mV) and at greater than 3 ms after a saturating actinic flash. This wave has an action spectrum different from that of Photosystem II centers containing Q and could arise from a secondary but not primary electron transfer. A low-potential fluorescence quencher is observed in chloroplasts which largely disappears in a single saturating flash at ? 185 mV and which does not participate in a transmembrane electron transfer. This low-potential quencher (probably equivalent to fluorescence quencher, QL) and Q are altogether different species. Redox titration of C550 shows that if electron acceptor Qβ is indeed characterized by an Em,7 of + 120 mV, then this acceptor does not give rise to a C550 signal upon reduction and does not participate in a transmembrane electron transfer. This titration also shows that C550 is not associated with QL.  相似文献   
36.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):452-459
Redox titrations of the flash-induced formation of C550 (a linear indicator of Q?) were performed between pH 5.9 and 8.3 in Chlamydomonas Photosystem II particles lacking the secondary electron acceptor, B. One-third of the reaction centers show a pH-dependent midpoint potential (Em,7.5) = ? 30 mV) for redox couple QQ?, which varies by ?60 mV/pH unit. Two-thirds of the centers show a pH-independent midpoint potential (Emm = + 10 mV) for this couple. The elevated pH-independent Em suggests that in the latter centers the environment of Q has been modified such as to stabilize the semiquinone anion, Q?. The midpoint potentials of the centers having a pH-dependent Em are within 20 mV of those observed in chloroplasts having a secondary electron acceptor. It appears therefore that the secondary electron acceptor exerts little influence on the Em of QQ?. An EPR signal at g 1.82 has recently been attributed to a semiquinone-iron complex which comprises Q?. The similar redox behavior reported here for C550 and reported by others (Evans, M.C.W., Nugent, J.H.A., Tilling, L.A. and Atkinson, Y.E. (1982) FEBS Lett. 145, 176–178) for the g 1.82 signal in similar Photosystem II particles confirm the assignment of this EPR signal to Q?. At below ?200 mV, illumination of the Photosystem II particles produces an accumulation of reduced pheophytin (Ph?). At ?420 mV Ph? appears with a quantum yield of 0.006–0.01 which in this material implies a lifetime of 30–100 ns for the radical pair P-680+Ph?.  相似文献   
37.
Larvae of the cockroach Diploptera punctata were reared in isolation, in pairs, or in groups of 8–10. Duration of larval development, age at each ecdysis, weights at birth and ecdyses, and adult head-capsule width were measured. Duration of larval development was longer and adult size was larger in isolated animals than in animals reared in pairs and groups. The effect of isolation on development was more pronounced in males. All females had 4 larval instars, whereas males had 3 or 4 instars. The proportion of males with 4 larval instars was higher among animals reared in isolation. There was no difference in the duration of larval development or adult size between pair- and group-reared animals. The sex of animals in the group did not affect adult size or the duration of larval development. Males which underwent 3 or 4 larval instars had different schedules of moulting. Rates of growth of males of both instar types reared in isolation and pairs were similar. Greater adult weight of isolated animals and 4-instar-type males was a result of their longer duration of larval development. Both a higher rate of growth and longer duration of larval development contribute to the larger adult size of females than males.  相似文献   
38.
39.
The proton-translocating ATPase of Escherichia coli   总被引:17,自引:0,他引:17  
  相似文献   
40.
The energy vs distance balance of cell suspensions (in the presence and in the absence of extracellular biopolymer solutions) is studied, not only in the light of the classical Derjaguin-Landau-Verwey-Over-beek (DLVO) theory (which considered just the electrostatic (EL) and Lifshitz-van der Waals (LW) interactions), but also by taking electron-acceptor/electron-donor, or Lewis acid-base (AB) and osmotic (OS) interactions into account. Since cell surfaces, as well as many biopolymers tend to have strong monopolar electron-donor properties, they are able to engage in a strong mutual AB repulsion when immersed in a polar liquid such as water. The effects of that repulsion have been observed earlier in the guise of hydration pressure. The AB repulsion is, at close range, typically one or two orders of magnitude stronger than the EL repulsion, but its rate of decay is much steeper. In most cases, AB interactions are quantitatively the dominant factor in cell stability (when repulsive) and in “hydrophobic interactions” (when attractive). OS interactions exerted by extracellularly dissolved biopolymers are weak, but their rate of decay is very gradual, so OS repulsions engendered by biopolymer solutions may be of importance in certain long-range interactions. OS interactions exerted by biopolymers attached to cells or particles (e.g., by glycocalix glycoproteins), are very short-ranged and usually are negligibly small in comparison with the other interaction forces, in aqueous media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号