首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10363篇
  免费   687篇
  国内免费   379篇
  11429篇
  2023年   127篇
  2022年   220篇
  2021年   252篇
  2020年   234篇
  2019年   275篇
  2018年   371篇
  2017年   208篇
  2016年   243篇
  2015年   271篇
  2014年   612篇
  2013年   766篇
  2012年   390篇
  2011年   544篇
  2010年   577篇
  2009年   703篇
  2008年   688篇
  2007年   712篇
  2006年   634篇
  2005年   567篇
  2004年   455篇
  2003年   417篇
  2002年   380篇
  2001年   201篇
  2000年   201篇
  1999年   167篇
  1998年   187篇
  1997年   120篇
  1996年   85篇
  1995年   100篇
  1994年   95篇
  1993年   88篇
  1992年   76篇
  1991年   43篇
  1990年   43篇
  1989年   40篇
  1988年   33篇
  1987年   23篇
  1986年   34篇
  1985年   37篇
  1984年   50篇
  1983年   32篇
  1982年   33篇
  1981年   23篇
  1980年   10篇
  1979年   12篇
  1978年   5篇
  1977年   9篇
  1976年   10篇
  1975年   7篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Incorporation of proteins in biomimetic giant unilamellar vesicles (GUVs) is one of the hallmarks towards cell models in which we strive to obtain a better mechanistic understanding of the manifold cellular processes. The reconstruction of transmembrane proteins, like receptors or channels, into GUVs is a special challenge. This procedure is essential to make these proteins accessible to further functional investigation. Here we describe a strategy combining two approaches: cell-free eukaryotic protein expression for protein integration and GUV formation to prepare biomimetic cell models. The cell-free protein expression system in this study is based on insect lysates, which provide endoplasmic reticulum derived vesicles named microsomes. It enables signal-induced translocation and posttranslational modification of de novo synthesized membrane proteins. Combining these microsomes with synthetic lipids within the electroswelling process allowed for the rapid generation of giant proteo-liposomes of up to 50 μm in diameter. We incorporated various fluorescent protein-labeled membrane proteins into GUVs (the prenylated membrane anchor CAAX, the heparin-binding epithelial growth factor like factor Hb-EGF, the endothelin receptor ETB, the chemokine receptor CXCR4) and thus presented insect microsomes as functional modules for proteo-GUV formation. Single-molecule fluorescence microscopy was applied to detect and further characterize the proteins in the GUV membrane. To extend the options in the tailoring cell models toolbox, we synthesized two different membrane proteins sequentially in the same microsome. Additionally, we introduced biotinylated lipids to specifically immobilize proteo-GUVs on streptavidin-coated surfaces. We envision this achievement as an important first step toward systematic protein studies on technical surfaces.  相似文献   
32.
The localization of beta-actin mRNA to the leading lamellae of chicken fibroblasts and neurite growth cones of developing neurons requires a 54-nt localization signal (the zipcode) within the 3' untranslated region. In this study we have identified and isolated five proteins binding to the zipcode. One of these we previously identified as zipcode binding protein (ZBP)1, a 4-KH domain protein. A second is now investigated in detail: a 92-kD protein, ZBP2, that is especially abundant in extracts from embryonic brain. We show that ZBP2 is a homologue of the human hnRNP protein, KSRP, that appears to mediate pre-mRNA splicing. However, ZBP2 has a 47-amino acid (aa) sequence not present in KSRP. Various portions of ZBP2 fused to GFP indicate that the protein most likely shuttles between the nucleus and the cytoplasm, and that the 47-aa insert promotes the nuclear localization. Expression of a truncated ZBP2 inhibits the localization of beta-actin mRNA in both fibroblast and neurons. These data suggest that ZBP2, although predominantly a nuclear protein, has a role in the cytoplasmic localization of beta-actin mRNA.  相似文献   
33.
ABSTRACT

Massive expansions of the hexanucleotide in C9orf72 are the primary genetic origins of familial amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). Current studies have found that this repeat sequence participates in the disease process by producing neurotoxic substances and reducing the level of C9orf72 protein; however, the progress in the functional study of C9orf72 is slow. Recently, a stable complex, consisting of C9orf72, SMCR8, and WDR41, has been implicated in regulating membrane trafficking and macroautophagy. We reported the cryo-electron microscopy (cryo-EM) structure of the C9orf72-SMCR8-WDR41 complex (CSW complex), unveiling that the CSW complex is a dimer of heterotrimers. Intriguingly, in the heterotrimer of the C9orf72-SMCR8-WDR41, C9orf72 interacts with SMCR8 in a manner similar to the FLCN-FNIP2 complex. Nevertheless, WDR41 is connected to the DENN domain of SMCR8 through its N-terminal β-strand and C-terminal helix but does not directly interact with C9orf72. Notably, the C9orf72-SMCR8 complex was demonstrated to act as a GAP for RAB8A and RAB11A in vitro.  相似文献   
34.
Mammalian 3α-hydroxysteroid dehydrogenases (3α-HSDs) have been divided into two types: Cytosolic NADP(H)-dependent 3α-HSDs belonging to the aldo-keto reductase family, and mitochondrial and microsomal NAD+-dependent 3α-HSDs belonging to the short-chain dehydrogenase/reductase family. In this study, we characterized a rat aldo-keto reductase (AKR1C17), whose functions are unknown. The recombinant AKR1C17 efficiently oxidized 3α-hydroxysteroids and bile acids using NAD+ as the preferred coenzyme at an optimal pH of 7.4-9.5, and was inhibited by ketamine and organic anions. The mRNA for AKR1C17 was detected specifically in rat kidney, where the enzyme was more highly expressed as a cytosolic protein than NADP(H)-dependent 3α-HSD (AKR1C9). Thus, AKR1C17 represents a novel NAD+-dependent type of cytosolic 3α-HSD with unique inhibitor sensitivity and tissue distribution. In addition, the replacement of Gln270 and Glu276 of AKR1C17 with the corresponding residues of NADP(H)-dependent 3α-HSD resulted in a switch in favor of NADP+ specificity, suggesting their key roles in coenzyme specificity.  相似文献   
35.
Here we report the NMR resonance assignments for the reduced form of human IgG1 CH3 domain, a 26 kDa dimer in solution (residues 341–447). The assignments have been deposited in the BioMagResBank with a BMRB accession number of 15204.  相似文献   
36.
CONSTANS-Like (COL) proteins are plant-specific nuclear regulators of gene expression but do not contain a known DNA-binding motif. We tested whether a common DNA-binding protein can deliver these proteins to specific cis-acting elements. We screened for proteins that interact with two members of a subgroup of COL proteins. These COL proteins were Tomato COL1 (TCOL1), which does not seem to be involved in the control of flowering time, and the Arabidopsis thaliana CONSTANS (AtCO) protein which mediates photoperiodic induction of flowering. We show that the C-terminal plant-specific CCT (CO, CO-like, TIMING OF CAB EXPRESSION 1) domain of both proteins binds the trimeric CCAAT binding factor (CBF) via its HAP5/NF-YC component. Chromatin immunoprecipitation demonstrated that TCOL is recruited to the CCAAT motifs of the yeast CYC1 and HEM1 promoters by HAP5. In Arabidopsis, each of the three CBF components is encoded by several different genes that are highly transcribed. Under warm long days, high levels of expression of a tomato HAP5 (THAP5a) gene can reduce the flowering time of Arabidopsis. A mutation in the CCT domain of TCOL1 disrupts the interaction with THAP5 and the analogous mutation in AtCO impairs its function and delays flowering. CBFs are therefore likely to recruit COL proteins to their DNA target motifs in planta.  相似文献   
37.
It is now widely recognized that gene expression and cellular processes include a probabilistic component. However, this does not essentially modify the theory of genetic programming. This stochastic aspect, which is called noise, is usually conceived as a margin of fluctuation in the way the genetic program functions and the latter remains understood as a specific mechanism guided by genetic information. In contrast, recent data show that proteins do not possess a high level of specificity. They can interact with numerous molecular partners. As a consequence molecular interactions are not simply “noisy”. Because they are subject to large combinatorial interaction possibilities, they are also intrinsically stochastic and must be sorted out by the cell structure. This contradicts the genetic programming theory which is based on the idea that protein interactions are directed by their stereospecificity and genetic information. Taking into account the lack of protein specificity leads to a new theory. Natural selection acts not only in evolution but also in ontogenesis by sorting stochastic molecular interactions. In this frame, the making up of an organism, instead of being a simple bottom-top process in which information flows from genes to phenotypes, is both a bottom-top and top-bottom process. Genes provide proteins, but their stochastic interactions are sorted by selective constraints arising from the cell and multi-cellular structures, which are themselves subject to the action of natural selection.  相似文献   
38.
Dahiya M  Rajamohan G  Dikshit KL 《FEBS letters》2005,579(7):1565-1572
Presence of isolated beta or betagamma domains of streptokinase (SK) increased the catalytic activity of staphylokinase (SAK)-plasmin (Pm) complex up to 60%. In contrast, fusion of SK beta or betagamma domains with the C-terminal end of SAK drastically reduced the catalytic activity of the activator complex. The enhancement effect mediated by beta or betagamma domain on Pg activator activity of SAK-Pm complex was reduced greatly (45%) in the presence of isolated kringles of Pg, whereas, kringles did not change cofactor activity of SAK fusion proteins (carrying beta or betagamma domains) significantly. When catalytic activity of SAK-microPm (catalytic domain of Pm lacking kringle domains) complex was examined in the presence of isolated beta and betagamma domains, no enhancement effect on Pg activation was observed, whereas, enzyme complex formed between microplasmin and SAK fusion proteins (SAKbeta and SAKbetagamma) displayed 50-70% reduction in their catalytic activity. The present study, thus, suggests that the exogenously present beta and betagamma interact with Pg/Pm via kringle domains and elevate catalytic activity of SAK-Pm activator complex resulting in enhanced substrate Pg activation. Fusion of beta or betagamma domains with SAK might alter these intermolecular interactions resulting in attenuated functional activity of SAK.  相似文献   
39.
40.
Confocal and electron microscopy images, and WB analysis of cellular fractions revealed that HP1γ is in the nucleus but also in the cytoplasm of C2C12 myoblasts, myotubes, skeletal and cardiac muscles, N2a, HeLa and HEK293T cells. Signal specificity was tested with different antibodies and by HP1γ knockdown. Leptomycin B treatment of myoblasts increased nuclear HP1γ, suggesting that its nuclear export is Crm-1-dependent. HP1γ exhibited a filamentous pattern of staining partially co-localizing with actin in the cytoplasm of myotubes and myofibrils. Immunoelectron microscopic analysis showed high-density immunogold particles that correspond to HP1γ localized to the Z-disk and A-band of the sarcomere of skeletal muscle. HP1γ partially co-localized with actin in C2C12 myotubes and murine myofibrils. Importantly, actin co-immunoprecipitated with HP1γ in the nuclear and cytosolic fractions of myoblasts. Actin co-immunoprecipitated with HP1γ in myoblasts incubated in the absence or presence of the actin depolymerizing agent cytochalasin D, suggesting that HP1γ may interact with G-and F-actin. In the cytoplasm, HP1γ was associated to the perinuclear actin cap that controls nuclear shape and position. In the nucleus, re-ChIP assays showed that HP1γ-actin associates to the promoter and transcribed regions of the house keeping gene GAPDH, suggesting that HP1γ may function as a scaffold protein for the recruitment of actin to control gene expression. When HP1γ was knocked-down, myoblasts were unable to differentiate or originated thin myotubes. In summary, HP1γ is present in the nucleus and the cytoplasm interacting with actin, a protein complex that may exert different functions depending on its subcellular localization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号