首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9859篇
  免费   750篇
  国内免费   538篇
  2024年   14篇
  2023年   173篇
  2022年   225篇
  2021年   303篇
  2020年   275篇
  2019年   326篇
  2018年   397篇
  2017年   263篇
  2016年   268篇
  2015年   293篇
  2014年   658篇
  2013年   693篇
  2012年   413篇
  2011年   534篇
  2010年   576篇
  2009年   662篇
  2008年   668篇
  2007年   691篇
  2006年   633篇
  2005年   538篇
  2004年   453篇
  2003年   378篇
  2002年   338篇
  2001年   190篇
  2000年   167篇
  1999年   152篇
  1998年   156篇
  1997年   101篇
  1996年   68篇
  1995年   82篇
  1994年   81篇
  1993年   64篇
  1992年   52篇
  1991年   40篇
  1990年   30篇
  1989年   26篇
  1988年   17篇
  1987年   11篇
  1986年   17篇
  1985年   26篇
  1984年   20篇
  1983年   7篇
  1982年   14篇
  1981年   13篇
  1980年   12篇
  1979年   12篇
  1978年   7篇
  1976年   4篇
  1973年   3篇
  1971年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Pharmacological treatment of obesity has been neglected as a viable therapeutic option for many years. Recent long term studies with combinations of obesity drugs gives promise that drugs may play a role in weight maintenance, which classically has been the most difficult aspect of treating obesity. Currently available obesity drugs include centrally acting adrenergic agents and serotonin agonists. Drugs still in development include a lipase inhibitor that produces fat malabsorption, a combined adrenergic-serotonergic reuptake inhibitor, various gut-central nervous system peptides, and a number of beta-3 agonists. Any of these obesity drugs given alone produces modest weight loss, and for most, weight loss continues for as long as medication is given. The most successful drug regimens to date are combinations of phentermine and fenfluramine or of ephedrine, caffeine, and/or aspirin. The former combination produces reduction in body weight and complications of obesity for 2 to almost 4 years in clinical trials to date. More research is needed to document long term efficacy and particularly the long term safety of these and other combinations.  相似文献   
52.
Paternal genome loss (PGL) during early embryogenesis is caused by two different genetic elements in the parasitoid wasp, Nasonia vitripennis. Paternal sex ratio (PSR) is a paternally inherited supernumerary chromosome that disrupts condensation of the paternal chromosomes by the first mitotic division of fertilized eggs. Bacteria belonging to the genus Wolbachia are present in Nasonia eggs and also disrupt paternal chromosome condensation in crosses between cytoplasmically incompatible strains. Cytoplasmic incompatibility Wolbachia are widespread in insects, whereas PSR is specific to this wasp. PGL results in production of male progeny in Nasonia due to haplodiploid sex determination. The cytological events associated with PGL induced by the PSR chromosome and by Wolbachia were compared by fluorescent light microscopy using the fluorochrome Hoescht 33258. Cytological examination of eggs fertilized with PSR-bearing sperm revealed that a dense paternal chromatin mass forms prior to the first metaphase. Quantification of chromatin by epifluorescence indicates that this mass does undergo replication along with the maternal chromatin prior to the first mitotic division but does not replicate during later mitotic cycles. Contrary to previous reports using other staining methods, the paternal chromatin mass remains condensed during interphase and persists over subsequent mitotic cycles, at least until formation of the syncytial blastoderm and cellularization, at which time it remains near the center of the egg with the yolk nuclei. Wolbachia-induced PGL shows several marked differences. Most notable is that the paternal chromatin mass is more diffuse and tends to be fragmented during the first mitotic division, with portions becoming associated with the daughter nuclei. Nuclei containing portions of the paternal chromatin mass appear to be delayed in subsequent mitotic divisions relative to nuclei free of paternal chromatin. Crosses combining incompatibility with PSR were cytologically similar to Wolbachia-induced PGL, although shearing of the paternal chromatin mass was reduced. Wolbachia may, therefore, block an earlier stage of paternal chromatin processing in the fertilized eggs than does PSR. © 1995 Wiley-Liss, Inc.  相似文献   
53.
Based on our previous work demonstrating that (SerPro)x epitopes are common to extensin-like cell wall proteins in Chlamydomonas reinhardtii, we looked for similar proteins in the distantly related species C. eugametos. Using a polyclonal antiserum against a (SerPro)10 oligopeptide, we found distinct sets of stage-specific polypeptides immunoprecipitated from in vitro translations of C. eugametos RNA. Screening of a C. eugametos cDNA expression library with the antiserum led to the isolation of a cDNA (WP6) encoding a (SerPro)x-rich multidomain wall protein. Analysis of a similarly selected cDNA (VSP-3) from a C. reinhardtii cDNA expression library revealed that it also coded for a (SerPro)x-rich multidomain wall protein. The C-terminal rod domains of VSP-3 and WP6 are highly homologous, while the N-terminal domains are dissimilar; however, the N-terminal domain of VSP-3 is homologous to the globular domain of a cell wall protein from Volvox carteri. Exon shuffling might be responsible for this example of domain conservation over 350 million years of volvocalean cell wall protein evolution.  相似文献   
54.
55.
Interaction between a 70-amino acid and zinc-binding polypeptide from the regulatory chain and the catalytic (C) trimer of aspartate transcarbamoylase (ATCase) leads to dramatic changes in enzyme activity and affinity for active site ligands. The hypothesis that the complex between a C trimer and 3 polypeptide fragments (zinc domain) is an analog of R state ATCase has been examined by steady-state kinetics, heavy-atom isotope effects, and isotope trapping experiments. Inhibition by the bisubstrate ligand, N-(phosphonacetyl)-L-aspartate (PALA), or the substrate analog, succinate, at varying concentrations of substrates, aspartate, or carbamoyl phosphate indicated a compulsory ordered kinetic mechanism with carbamoyl phosphate binding prior to aspartate. In contrast, inhibition studies on C trimer were consistent with a preferred order mechanism. Similarly, 13C kinetic isotope effects in carbamoyl phosphate at infinite aspartate indicated a partially random kinetic mechanism for C trimer, whereas results for the complex of C trimer and zinc domain were consistent with a compulsory ordered mechanism of substrate binding. The dependence of isotope effect on aspartate concentration observed for the Zn domain-C trimer complex was similar to that obtained earlier for intact ATCase. Isotope trapping experiments showed that the compulsory ordered mechanism for the complex was attributable to increased "stickiness" of carbamoyl phosphate to the Zn domain-C trimer complex as compared to C trimer alone. The rate of dissociation of carbamoyl phosphate from the Zn domain-C trimer complex was about 10(-2) that from C trimer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
56.
The regulatory enzyme aspartate transcarbamoylase (ATCase), comprising 2 catalytic (C) trimers and 3 regulatory (R) dimers, owes its stability to the manifold interchain interactions among the 12 polypeptide chains. With the availability of a recombinant 70-amino acid zinc-containing polypeptide fragment of the regulatory chain of ATCase, it has become possible to analyze directly the interaction between catalytic and regulatory chains in a complex of simpler structure independent of other interactions such as those between the 2 C trimers, which also contribute to the stability of the holoenzyme. Also, the effect of the interaction between the polypeptide, termed the zinc domain, and the C trimer on the thermal stability and other properties can be measured directly. Differential scanning microcalorimetry experiments demonstrated that the binding of the zinc domain to the C trimer leads to a complex of markedly increased thermal stability. This was shown with a series of mutant forms of the C trimer, which themselves varied greatly in their temperature of denaturation due to single amino acid replacements. With some C trimers, for which tm varied over a range of 30 degrees C due to diverse amino acid substitutions, the elevation of tm resulting from the interaction with the zinc domain was as large as 18 degrees C. The values of tm for a variety of complexes of mutant C trimers and the wild-type zinc domain were similar to those observed when the holoenzymes containing the mutant C trimers were subjected to heat denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
57.
Three-dimensional structural analysis of physiologically important serine proteases is useful in identifying functional features relevant to the expression of their activities and specificities. The human serine protease anticoagulant protein C is currently the object of many genetic site-directed mutagenesis studies. Analyzing relationships between its structure and function and between naturally occurring mutations and their corresponding clinical phenotypes would be greatly assisted by a 3-dimensional structure of the enzyme. To this end, molecular models of the protease domain of protein C have been produced using computational techniques based on known crystal structures of homologous enzymes and on protein C functional information. The resultant models corresponding to different stages along the processing pathway of protein C were analyzed for structural and electrostatic differences arising during the process of protein C maturation and activation. The most satisfactory models included a calcium ion bound to residues homologous to those that ligate calcium in the trypsin structure. Inspection of the surface features of the models allowed identification of residues putatively involved in specific functional interactions. In particular, analysis of the electrostatic potential surface of the model delineated a positively charged region likely to represent a novel substrate recognition exosite. To assist with future mutational studies, binding of an octapeptide representing a protein C cleavage site of its substrate factor Va to the enzyme's active site region was modeled and analyzed.  相似文献   
58.
能组织成超级结构的各种序列组块,因其具有特定一级序列、或者具有某种卷曲的螺旋构象和某种非β螺旋结构,可以作为有特异功能的结构域、被特异的结合蛋白质识别和结合,因而可称为密码结构域,密码结构域作为特异的分子相互作用和过程的遗传指令,参与细胞周期的各种事件乃至发育和分化过程中基因有区别的表达.  相似文献   
59.
Synopsis Juvenile salmonids,Oncorhynchus spp., commonly encounter conditions (e.g., during hatchery release and dam passage) that result in damage to the skin, scale, and slime complex. We conducted laboratory experiments to determine if descaling of juvenile chinook salmon,O. tshawytscha, increased their vulnerability to predation, and to assess the physiological stress responses elicited by descaling. Salmon were experimentally descaled on either 10% or 20% of their total body area. When offered equal numbers of control and descaled juvenile chinook salmon, northern squawfish,Ptychocheilus oregonensis, did not consume significantly more of either prey type (48–60% of consumed prey were descaled). Juvenile chinook salmon descaled on 10% of their body area did show significant physiological stress responses, however. Mean concentrations of plasma cortisol peaked 1 h after descaling, and returned to control levels by 12 h. Plasma glucose peaked 3 h post-treatment and remained elevated for 24 h. Plasma lactate increased immediately following treatment and returned to undisturbed control levels by 3 h. The osmoregulatory response of plasma potassium was highly variable, but plasma sodium decreased immediately and remained low for 24 h. The observed physiological responses suggest that descaling of juvenile chinook salmon could result in decreased resistance to disease and other stressors encountered in the field, possibly leading to reduced performance capacity and lowered survival.  相似文献   
60.
Characterization of the human glucagon-receptor-encoding gene (GGR) should provide a greater understanding of blood glucose regulation and may reveal a genetic basis for the pathogenesis of diabetes. A cDNA encoding a complete functional human glucagon receptor (GGR) was isolated from a liver cDNA library by a combination of polymerase chain reaction and colony hybridization. The cDNA encodes a receptor protein with 80% identity to rat GGR that binds [125I] glucagon and transduces a signal leading to increases in the concentration of intracellular cyclic adenosine 3′,5′-monophosphate. Southern blot analysis of human DNA reveals a hybridization pattern consistent with a single GGR locus. In situ hybridization to metaphase chromosome preparations maps the GGR locus to chromosome 17q25. Analysis of the genomic sequence shows that the coding region spans over 5.5 kb and is interrupted by 12 introns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号