首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13189篇
  免费   1326篇
  国内免费   460篇
  2024年   14篇
  2023年   160篇
  2022年   187篇
  2021年   316篇
  2020年   404篇
  2019年   455篇
  2018年   389篇
  2017年   460篇
  2016年   516篇
  2015年   622篇
  2014年   669篇
  2013年   668篇
  2012年   575篇
  2011年   609篇
  2010年   631篇
  2009年   798篇
  2008年   796篇
  2007年   837篇
  2006年   646篇
  2005年   609篇
  2004年   505篇
  2003年   448篇
  2002年   394篇
  2001年   348篇
  2000年   336篇
  1999年   301篇
  1998年   251篇
  1997年   221篇
  1996年   235篇
  1995年   192篇
  1994年   178篇
  1993年   148篇
  1992年   167篇
  1991年   117篇
  1990年   91篇
  1989年   101篇
  1988年   107篇
  1987年   70篇
  1986年   55篇
  1985年   65篇
  1984年   59篇
  1983年   38篇
  1982年   38篇
  1981年   49篇
  1980年   29篇
  1979年   23篇
  1978年   18篇
  1977年   9篇
  1975年   8篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
131.
Armaments and ornaments: an evolutionary explanation of traits of dual Utility   总被引:26,自引:0,他引:26  
Secondary sexual characters in many species function both in male-male competition and as cues for female choice. Based on a literature compilation of existing knowledge of traits with this dual function, we propose that they commonly arise through intersexual selection processes and serve as honest signals to other males regarding fighting ability or dominance. Faking these traits, here called armaments, (i.e. weapons and status badges) is difficult, as they are constantly put to trial in male-male contests. Females that subsequently utilize them as indicators of male phenotypic quality when selecting a partner will benefit by acquiring males of higher quality to father their offspring. Thus, evolution of armaments through male-male competition is seen as a usually initiating process, whereas female choice later may assume a role as an additional selective factor. The reverse, that males use information from traits evolved through female choice, is, however, also possible. The traditional view of independently evolved and temporarily unordered intra- and intersexual selection processes fails to explain dual trait functions. Moreover, our model may more satisfyingly than traditional ones explain how trait honesty and trait genetic variance are maintained: theoretical and empirical evidence suggests that such honesty and variation are more easily maintained under male-male competition than under female choice.  相似文献   
132.
Understanding WaveShrink: Variance and bias estimation   总被引:15,自引:0,他引:15  
BRUCE  ANDREW G.; GAO  HONG-YE 《Biometrika》1996,83(4):727-745
  相似文献   
133.
Variation in queen phenotype and reproductive role in the fire ant Solenopsis invicta has been shown to have a simple genetic basis in a single introduced population in the United States. The evidence consists of an association between this variation and queen genotype at Pgm-3, a phosphoglucomutase-encoding gene. In the present study, we surveyed Pgm-3 allele and genotype frequencies in diverse populations from the native and introduced ranges of this ant to learn whether this simple genetic basis for reproductive traits is a general feature of the species or a genetic anomaly in introduced ants stemming from a recent bottleneck or the invasion of novel habitats. No egg-laying queens living in polygyne (multiple-queen) nests possessed the homozygous genotype Pgm-3a/a in any of the study populations, yet nonreproductive females from such nests (workers as well as queens that had not yet initiated oogenesis) possessed this genotype at moderate frequencies. Remarkably, Pgm-3a/a was the most common genotype among all classes of females, including egg-laying queens, in monogyne (single-queen) nests from all populations studied. Genotype proportions at Pgm-3 in polygyne populations typically departed strongly from the proportions expected under Hardy-Weinberg equilibrium, whereas those in monogyne populations did not. These patterns establish that a single mendelian gene influences queen reproductive role in S. invicta and that this gene uniformly is under strong directional selection in the polygyne social form only. Moreover, the perfect association of Pgm-3 genotype and reproductive role in all populations, combined with the known function of phosphoglucomutase in insect metabolism, suggest that this gene may directly influence queen phenotypes rather than merely serving as a marker for a linked gene that causes the effects.  相似文献   
134.
We tested the hypothesis that locomotor speed and endurance show a negative genetic correlation using a genetically variable laboratory strain of house mice (Hsd:ICR: Mus domesticus). A negative genetic correlation would qualify as an evolutionary “constraint,” because both aspects of locomotor performance are generally expected to be under positive directional selection in wild populations. We also tested whether speed or endurance showed any genetic correlation with body mass. For all traits, residuals from multiple regression equations were computed to remove effects of possible confounding variables such as age at testing, measurement block, observer, and sex. Estimates of quantitative genetic parameters were then obtained using Shaw's (1987) restricted maximum-likelihood programs, modified to account for our breeding design, which incorporated cross-fostering. Both speed and endurance were measured on two consecutive trial days, and both were repeatable. We initially analyzed performances on each trial day and the maximal value. For endurance, the three estimates of narrow-sense heritabilities ranged from 0.17 to 0.33 (full ADCE model), and some were statistically significantly different from zero using likelihood ratio tests. The heritability estimate for sprint speed measured on trial day 1 was 0.17, but negative for all other measures. Moreover, the additive genetic covariance between speeds measured on the two days was near zero, indicating that the two measures are to some extent different traits. The additive genetic covariance between speed on trial day 1 and any of the four measures of endurance was negative, large, and always statistically significant. None of the measures of speed or endurance was significantly genetically correlated with body mass. Thus, we predict that artificial selection for increased locomotor speed in these mice would result in a decrease in endurance, but no change in body mass. Such experiments could lead to a better understanding of the physiological mechanisms leading to trade-offs in aspects of locomotor abilities.  相似文献   
135.
Genetic variances, heritabilities, and genetic correlations of floral traits were measured in the monocarpic perennial Ipomopsis aggregata (Polemoniaceae). A paternal half-sib design was employed to generate seeds in each of four years, and seeds were planted back in the field near the parental site. The progeny were followed for up to eight years to estimate quantitative genetic parameters subject to natural levels of environmental variation over the entire life cycle. Narrow-sense heritabilities of 0.2–0.8 were detected for the morphometric traits of corolla length, corolla width, stigma position, and anther position. The proportion of time spent by the protandrous flowers in the pistillate phase (“proportion pistillate”) also exhibited detectable heritability of near 0.3. In contrast, heritability estimates for nectar reward traits were low and not significantly different from zero, due to high environmental variance between and within flowering years. The estimates of genetic parameters were combined with phenotypic selection gradients to predict evolutionary responses to selection mediated by the hummingbird pollinators. One trait, corolla width, showed the potential for a rapid response to ongoing selection through male function, as it experienced both direct selection, by influencing pollen export, and relatively high heritability. Predicted responses were lower for proportion pistillate and corolla length, even though these traits also experienced direct selection. Stigma position was expected to respond positively to indirect selection of proportion pistillate but negatively to selection of corolla length, with the net effect sensitive to variation in the selection estimates. Anther position also was not directly selected but could respond to indirect selection of genetically correlated traits.  相似文献   
136.
Although most plants experience herbivory by several insect species, there has been little empirical work directed toward understanding plant responses to these simultaneous selection pressures. In an experiment in which herbivory by flea beetles (Phyllotreta cruciferae) and diamondback moths (Plutella xylostella) was manipulated in a factorial design, I found that selection for resistance to these herbivores is not independent in Brassica rapa. Specifically, the effect of flea beetle damage on B. rapa fitness depends on the amount of diamondback moth damage a plant experiences: damage by these herbivores has a nonadditive effect on plant fitness. When diamondbacks are abundant, plants that sustain high levels of damage by flea beetles are favored by natural selection, but when diamondbacks are rare, a low level of damage by flea beetles is favored. However, resistance to the later-feeding diamondback moth is not affected by the presence or absence of damage by early-feeding flea beetles. Thus, there are no plant-mediated ecological interactions between these herbivores that affect the outcome of selection for resistance. Because these herbivores do not independently affect plant fitness, neither is likely to develop a pairwise coevolutionary relationship with its host. Instead, coevolution is diffuse.  相似文献   
137.
We measured the size of eggs produced by populations of Drosophila melanogaster that had been collected along latitudinal gradients in different continents or that had undergone several years of culture at different temperatures in the laboratory. Australian and South American populations from higher latitudes produced larger eggs when all were compared at a standard temperature. Laboratory populations that had been evolving at 16.5°C produced larger eggs than populations that had evolved at 25°C or 29°C, suggesting that temperature may be an important selective agent in producing the latitudinal clines. Flies from laboratory populations produced larger eggs at an experimental temperature of 16.5°C than at 25°C, and there was no indication of genotype-environment interaction for egg size. Evolution of egg size in response to temperature cannot be accounted for by differences in adult body size between populations. It is not clear which life-history traits are direct targets of thermal selection and which are showing correlated responses, and disentangling these is a task for the future.  相似文献   
138.
When Darwin first proposed the possibility of sexual selection, he identified two mechanisms, male competition for mates and female choice of mates. Extending this classification, we distinguish two forms of mate choice, direct and indirect. This distinction clarifies the relationship between Darwin's two mechanisms and, furthermore, indicates that the potential scope for sexual selection is much wider than thus far realized. Direct mate choice, the focus of most research on sexual selection in recent decades, requires discrimination between attributes of individuals of the opposite sex. Indirect mate choice includes all other behavior or morphology that restricts an individual's set of potential mates. Possibilities for indirect mate choice include advertisement of fertility or copulation, evasive behavior, aggregation or synchronization with other individuals of the same sex, and preferences for mating in particular locations. In each of these cases, indirect mate choice sets the conditions for competition among individuals of the opposite sex and increases the chances of mating with a successful competitor. Like direct mate choice, indirect mate choice produces assortative mating. As a consequence, the genetic correlation between alleles affecting indirect choice and those affecting success in competition for mates can produce self-accelerating evolution of these complementary features of the sexes. The broad possibilities for indirect mate choice indicate that sexual selection has more pervasive influences on the coevolution of male and female characteristics than previously realized.  相似文献   
139.
A model is used to study quantitatively the impact of a good genes process and direct natural selection on the evolution of a mating preference. The expression of a male display trait is proportional to genetic quality, which is determined by the number of deleterious mutations a male carries throughout his genome. Genetic variances and covariances, including the covariance between the preference and male trait that drives the good genes process, are allowed to evolve under an infinitesimal model. Results suggest that the good genes process generates only weak indirect selection on preferences, with an effective selection intensity of a few percent or less. If preferences are subject to direct natural selection of the intensity observed for other characters, the good genes process alone is not expected to exaggerate the male trait by more than a few phenotypic standard deviations, contrary to what is observed in highly sexually selected species. Good genes can, however, cause substantial exaggeration if preference genes are nearly selectively neutral. Alternatively, direct selection on preference genes, acting on mating behavior itself or on the genes' pleiotropic effects, can cause mating preferences and male display traits to be exaggerated by any degree. Direct selection of preference genes may therefore play an important role in species that show extreme sexual selection.  相似文献   
140.
Analysis of total aromatic amino acid (free and bound) in some cucumber accessions selected previously for resistance to western flower thrips, Frankliniella occidentalis (Pergande) [Thysanoptera: Thripidae], indicated that low concentrations of these essential nutrients, relative to total leaf protein, were correlated with a reduction in damage by the insect. Further analysis of samples of four important horticultural crops (lettuce, tomato, pepper and cucumber) with unknown levels of resistance to thrips showed a significant genotypic variation in the concentrations of total aromatic amino acids relative to the total leaf protein. Accessions from each crop with low or high concentrations of aromatic amino acids in proteins were exposed to thrips larvae. Regression analysis showed a highly significant positive correlation between aromatic amino acid concentration in leaf protein and thrips damage, regardless of crop species. It is concluded that higher concentrations of aromatic amino acids in plant proteins are important for successful thrips development. These results provide plant breeders with a promising tool for indirect selection without using undesirable insect bioassays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号