首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   883篇
  免费   55篇
  国内免费   27篇
  2024年   2篇
  2023年   3篇
  2022年   12篇
  2021年   15篇
  2020年   21篇
  2019年   30篇
  2018年   27篇
  2017年   11篇
  2016年   14篇
  2015年   14篇
  2014年   50篇
  2013年   64篇
  2012年   25篇
  2011年   38篇
  2010年   26篇
  2009年   28篇
  2008年   44篇
  2007年   45篇
  2006年   43篇
  2005年   35篇
  2004年   39篇
  2003年   31篇
  2002年   28篇
  2001年   20篇
  2000年   13篇
  1999年   17篇
  1998年   13篇
  1997年   22篇
  1996年   17篇
  1995年   15篇
  1994年   11篇
  1993年   18篇
  1992年   19篇
  1991年   8篇
  1990年   12篇
  1989年   11篇
  1988年   19篇
  1987年   15篇
  1986年   9篇
  1985年   9篇
  1984年   16篇
  1983年   11篇
  1982年   19篇
  1981年   10篇
  1980年   6篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
排序方式: 共有965条查询结果,搜索用时 62 毫秒
71.
Intraerythrocytic Plasmodium parasites depend on glycolysis for energy production. The stoichiometric amounts of lactate and protons produced are efficiently removed by a lactate:H(+) symporter. However, inhibition of recently identified plasma-membrane proton pumps result in acidification, suggesting additional mechanism(s) for proton generation. This article attempts to integrate the knowledge on the metabolic generation of protons and their disposal in the regulation of parasite cytosolic pH, and suggests additional roles for the various proton pumps that act in the parasite membrane.  相似文献   
72.
Variations in plant community composition across the landscape can influence nutrient retention and loss at the watershed scale. A striking example of plant species importance is the influence of N2-fixing red alder (Alnus rubra) on nutrient cycling in the forests of the Pacific Northwest. To understand the influence of red alder on watershed nutrient export, we studied the chemistry of 26 small watershed streams within the Salmon River basin of the Oregon Coast Range. Nitrate and dissolved organic nitrogen (DON) concentrations were positively related to broadleaf cover (dominated by red alder: 94% of basal area), particularly when near-coastal sites were excluded (r 2 = 0.65 and 0.68 for nitrate-N and DON, respectively). Nitrate and DON concentrations were more strongly related to broadleaf cover within entire watersheds than broadleaf cover within the riparian area alone, which indicates that leaching from upland alder stands plays an important role in watershed nitrogen (N) export. Nitrate dominated over DON in hydrologic export (92% of total dissolved N), and nitrate and DON concentrations were strongly correlated. Annual N export was highly variable among watersheds (2.4–30.8 kg N ha–1 y–1), described by a multiple linear regression combining broadleaf and mixed broadleaf–conifer cover (r2 = 0.74). Base cation concentrations were positively related to nitrate concentrations, which suggests that nitrate leaching increases cation losses. Our findings provide evidence for strong control of ecosystem function by a single plant species, where leaching from N saturated red alder stands is a major control on N export from these coastal watersheds.  相似文献   
73.
Recently, we have observed that the simultaneous application of free calcium (fCa) and ADP-magnesium (Mg) reduced the ADP:O ratio in isolated cardiac mitochondria. The uncoupling was prevented by cyclosporin A, an inhibitor of the permeability transition pore. The purpose of this study was to know if the generation of oxygen free radicals (OFR) is involved in this phenomenon and if it occurs during reoxygenation (Reox) of cultured cardiomyocytes. Cardiac mitochondria were harvested from male Wistar rats. Respiration was assessed in two media with different fCa concentrations (0 or 0.6 M) with palmitoylcarnitine and ADP-Mg as respiration substrates. The production of Krebs cycle intermediates (KCI) was determined. Without fCa in the medium, the mitochondria displayed a large production of citrate + isocitrate + -ketoglutarate. fCa drastically reduced these KCI and promoted the accumulation of succinate. To know if OFR are involved in the respiratory uncoupling, the effect of 4OH-TEMPO (250 M), a hydrosoluble scavenger of OFR, was tested. 4OH-TEMPO completely abolished the fCa- and ADP-Mg-induced uncoupling. Conversely, vitamin E contributed to further decreasing the ADP:O ratio. Since no hydrosoluble electron acceptor was added in our experiment, the oxygen free radical-induced oxidized vitamin E was confined near the mitochondrial membranes, which should reduce the ADP:O ratio by opening the permeability transition pore. The generation of OFR could result from the matrix accumulation of succinate. Taken together, these results indicate that mitochondrial Ca uptake induces a slight increase in membrane permeability. Thereafter, Mg enters the matrix and, in combination with Ca, stimulates the isocitrate and/or -ketoglutarate dehydrogenases. Matrix succinate favors oxygen free radical generation that further increases membrane permeability and allows respiratory uncoupling through proton leakage. To determine whether the phenomenon takes place during Reox, cultured cardiomyocytes were subjected to hypoxia and Reox. 14C-palmitate was added during Reox to determine the KCI profile. Succinate had not increased during Reox. In conclusion, calcium- and ADP-Mg-induced respiratory uncoupling is due to oxygen free radical generation through excess matrix accumulation of succinate. The phenomenon does not occur during reoxygenation because of a total restoration of mitochondrial magnesium and/or ADP concentration.  相似文献   
74.
The role of the TRP-1 protein, an animal cell homologue of the Drosophila transient receptor potential Ca2+ channel, in store-operated Ca2+ inflow in Xenopus laevis oocytes was investigated. A strategy involving RT-PCR and 3 and 5 rapid amplification of cDNA ends (RACE) was used to confirm and extend previous knowledge of the nucleotide and predicted amino acid sequences of Xenopus TRP-1 (xTRP-1). The predicted amino acid sequence was used to prepare an anti-TRP-1 polyclonal antibody which detected the endogenous oocyte xTRP-1 protein and the human TRPC-1 protein expressed in Xenopus oocytes. Ca2+ inflow (measured using fura-2) initiated by 3-deoxy-3-fluoroinositol 1,4,5-trisphosphate (InsP3F) or lysophosphatidic acid (LPA) was completely inhibited by low concentrations of lanthanides (IC50 = 0.5 M), indicating that InsP3F and LPA principally activate store-operated Ca2+ channels (SOCs). Antisense cRNA or antisense oligodeoxynucleotides, based on different regions of the xTRP-1 cDNA sequence, when injected into Xenopus oocytes, did not inhibit InsP3F-, LPA- or thapsigargin-stimulated Ca2+ inflow. Oocytes expressing the hTRPC-1 protein, which is 96% similar to xTRP-1, exhibited no detectable enhancement of either basal or InsP3F-stimulated Ca2+ inflow and only a very small enhancement of LPA-stimulated Ca2+ inflow compared with control oocytes. It is concluded that the endogenous xTRP-1 protein is unlikely to be responsible for Ca2+ inflow through the previously-characterised Ca2+-specific SOCs which are found in Xenopus oocytes. It is considered that xTRP-1 is likely to be a receptor-activated non-selective cation channel such as the channel activated by maitotoxin.  相似文献   
75.
The packed‐bed adsorption and elution of aqueous solutions of whey concentrate powders were investigated at pH 3.7 using a 5‐mL SP Sepharose FF column to separate and isolate two major proteins namely, α‐lactalbumin (ALA) and β‐lactoglobulin (BLG) from these solutions. ALA displaced and eluted BLG from the column in a pure form. Pure ALA could then be eluted with good recovery. A novel consecutive two‐stage separation process was developed to separate ALA and BLG from whey concentrate mixtures. Almost all of the BLG in the feed was recovered, with 78% being recovered at 95% purity and a further 20% at 86% purity. In addition, 67% of ALA was recovered, 48% at 54% purity and 19% at 60% purity. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
76.
In bacteria, membrane transporters of the cation diffusion facilitator (CDF) family participate in Zn2 +, Fe2 +, Mn2 +, Co2 + and Ni2 + homeostasis. The functional role during infection processes for several members has been shown to be linked to the specificity of transport. Sinorhizobium meliloti has two homologous CDF genes with unknown transport specificity. Here we evaluate the role played by the CDF SMc02724 (SmYiiP). The deletion mutant strain of SmYiiP (ΔsmyiiP) showed reduced in vitro growth fitness only in the presence of Mn2 +. Incubation of ΔsmyiiP and WT cells with sub-lethal Mn2 + concentrations resulted in a 2-fold increase of the metal only in the mutant strain. Normal levels of resistance to Mn2 + were attained by complementation with the gene SMc02724 under regulation of its endogenous promoter. In vitro, liposomes with incorporated heterologously expressed pure protein accumulated several transition metals. However, only the transport rate of Mn2 + was increased by imposing a transmembrane H+ gradient. Nodulation assays in alfalfa plants showed that the strain ΔsmyiiP induced a lower number of nodules than in plants infected with the WT strain. Our results indicate that Mn2 + homeostasis in S. meliloti is required for full infection capacity, or nodule function, and that the specificity of transport in vivo of SmYiiP is narrowed down to Mn2 + by a mechanism involving the proton motive force.  相似文献   
77.
The ligand binding domain of the LDL receptor (LDLR) contains seven structurally homologous repeats. The fifth repeat (LR5) is considered to be the main module responsible for the binding of lipoproteins LDL and β‐VLDL. LR5, like the other homologous repeats, is around 40‐residue long and contains three disulfide bonds and a conserved cluster of negatively charged residues surrounding a hexacoordinated calcium ion. The calcium coordinating cage is formed by the backbone oxygens of W193 and D198, and side‐chain atoms of D196, D200, D206, and E207. The functionality of LDLR is closely associated with the presence of calcium. Magnesium ions are to some extent similar to calcium ions. However, they appear to be involved in different physiological events and their concentrations in extracellular and intracellular compartments are regulated by different mechanisms. Whether magnesium ions can play a role in the complex cycle of LDLR internalization and recycling is not known. We report here a detailed study of the interaction between LR5 and these two cations combining ITC, emission fluorescence, high resolution NMR, and MD simulations, at extracellular and endosomal pHs. Our results indicate that the conformational stability and internal dynamics of LR5 are strongly modulated by the specific bound cation. It appears that the difference in binding affinity for these cations is somewhat compensated by their different concentrations in late LDL‐associated endosomes. While the mildly acidic and calcium‐depleted environment in late endosomes has been proposed to contribute significantly to LDL release, the presence of magnesium might assist in efficient LDLR recycling. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
78.
Recombinant monoclonal antibodies undergo extensive posttranslational modifications. In this article, we characterize major modifications, separated by cation exchange chromatography, on an immunoglobulin G1 (IgG1) monoclonal antibody (mAb). We found that N-terminal cyclization of glutamine residues to pyroglutamate on the light and heavy chains are the major isoforms resolved during cation exchange chromatography. However, using CEX, we also separated and identified isoforms with unpaired cysteine residues in the VH domain of the molecule (Cys22-Cys96). Omalizumab, a therapeutic anti-IgE antibody, has unpaired cysteine residues in the VH domain between Cys22 and Cys96, and the Fab fragment, containing the unpaired cysteine residues, is reported to have reduced potency. Dynamic interchain disulfide rearrangement, with slow kinetics, was recently reported to take place in serum for an IgG2 molecule and resulted in predictable mature isoforms. Analytical evaluation of our mAb, after recovery from serum, revealed that the unpaired intrachain cysteine residues (Cys22-Cys96) reformed their disulfide bond. The significance of this study is that correct pairing occurred rapidly, and we speculate that thiol molecules such as cysteine, homocysteine, and glutathione in serum provide an environment, outside the endoplasmic reticulum, for correct linkage.  相似文献   
79.
Depletion of intracellular Ca(2+) stores evokes Ca(2+) entry across the plasma membrane by inducing Ca(2+) release-activated Ca(2+) (CRAC) currents in many cell types. Recently, Orai and STIM proteins were identified as the molecular identities of the CRAC channel subunit and the endoplasmic reticulum Ca(2+) sensor, respectively. Here, extensive database searching and phylogenetic analysis revealed several lineage-specific duplication events in the Orai protein family, which may account for the evolutionary origins of distinct functional properties among mammalian Orai proteins. Based on similarity to key structural domains and essential residues for channel functions in Orai proteins, database searching also identifies a putative primordial Orai sequence in hyperthermophilic archaeons. Furthermore, modern Orai appears to acquire new structural domains as early as Urochodata, before divergence into vertebrates. The evolutionary patterns of structural domains might be related to distinct functional properties of Drosophila and mammalian CRAC currents. Interestingly, Orai proteins display two conserved internal repeats located at transmembrane segments 1 and 3, both of which contain key amino acids essential for channel function. These findings demonstrate biochemical and physiological relevance of Orai proteins in light of different evolutionary origins and will provide novel insights into future structural and functional studies of Orai proteins.  相似文献   
80.
Whether organic anion and cation transporters are involved in the renal excretion of xanthine derivatives, 3-methylxanthie and enprofylline, remains unclear. In this study, we have investigated the effects of typically predominant substrates for organic anion and cation transporters on the tubular secretion of 3-methylxanthine and enprofylline in rats. In the renal clearance experiments using typical substrates for organic anion transporters, probenecid and p-aminohippurate, probenecid (20 mg/kg), but not p-aminohippurate (100 mg/kg), significantly decreased the renal clearance and clearance ratio of 3-methylxanthine and enprofylline. The typical substrates for organic cation transport systems, tetraethylammonium (30.6 mg/kg) and cimetidine (50 or 100 mg/kg), significantly decreased the renal clearance and clearance ratio of 3-methylxanthine and enprofylline. These results suggest that the renal secretory transport of 3-methylxanthine and enprofylline are mediated by probenecid-, cimetidine- and tetraethylammonium-sensitive transport systems. Uric acid, an organic anion, significantly inhibited the renal secretion of 3-methylxanthine, but not enprofylline, suggesting that the renal tubular transport of 3-methylxanthine is also mediated via uric acid-sensitive transport system. These findings suggest the possibility that both organic anion and cation transporters are, at least, involved in the renal tubular transport of 3-methylxanthine and enprofylline in rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号