首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   20篇
  国内免费   2篇
  2023年   1篇
  2022年   7篇
  2021年   2篇
  2019年   4篇
  2018年   13篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   39篇
  2013年   45篇
  2012年   36篇
  2011年   36篇
  2010年   35篇
  2009年   29篇
  2008年   33篇
  2007年   57篇
  2006年   39篇
  2005年   35篇
  2004年   15篇
  2003年   10篇
  2002年   1篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   25篇
  1984年   40篇
  1983年   32篇
  1982年   46篇
  1981年   44篇
  1980年   34篇
  1979年   26篇
  1978年   17篇
  1977年   18篇
  1976年   12篇
  1975年   10篇
  1974年   5篇
  1973年   8篇
  1972年   1篇
排序方式: 共有800条查询结果,搜索用时 15 毫秒
211.
Protein thiolation by glutathione is a reversible and regulated post-translational modification that is increased in response to oxidants and nitric oxide. Because many mitochondrial enzymes contain critical thiol residues, it has been hypothesized that thiolation reactions regulate cell metabolism and survival. However, it has been difficult to differentiate the biological effects due to protein thiolation from other oxidative protein modifications. In this study, we used diamide to titrate protein glutathiolation and examined its impact on glycolysis, mitochondrial function, and cell death in rat aortic smooth muscle cells. Treatment of cells with diamide increased protein glutathiolation in a concentration-dependent manner and had comparably little effect on protein-protein disulfide formation. Diamide increased mitochondrial proton leak and decreased ATP-linked mitochondrial oxygen consumption and cellular bioenergetic reserve capacity. Concentrations of diamide above 200 μM promoted acute bioenergetic failure and caused cell death, whereas lower concentrations of diamide led to a prolonged increase in glycolytic flux and were not associated with loss of cell viability. Depletion of glutathione using buthionine sulfoximine had no effect on basal protein thiolation or cellular bioenergetics but decreased diamide-induced protein glutathiolation and sensitized the cells to bioenergetic dysfunction and death. The effects of diamide on cell metabolism and viability were fully reversible upon addition of dithiothreitol. These data suggest that protein thiolation modulates key metabolic processes in both the mitochondria and cytosol.  相似文献   
212.
In inside-out bovine heart sarcolemmal vesicles, p-chloromercuribenzenesulfonate (PCMBS) and n-ethylmaleimide (NEM) fully inhibited MgATP up-regulation of the Na+/Ca2+ exchanger (NCX1) and abolished the MgATP-dependent PtdIns-4,5P2 increase in the NCX1-PtdIns-4,5P2 complex; in addition, these compounds markedly reduced the activity of the PtdIns(4)-5kinase. After PCMBS or NEM treatment, addition of dithiothreitol (DTT) restored a large fraction of the MgATP stimulation of the exchange fluxes and almost fully restored PtdIns(4)-5kinase activity; however, in contrast to PCMBS, the effects of NEM did not seem related to the alkylation of protein SH groups. By itself DTT had no effect on the synthesis of PtdIns-4,5P2 but affected MgATP stimulation of NCX1: moderate inhibition at 1 mM MgATP and 1 μM Ca2+ and full inhibition at 0.25 mM MgATP and 0.2 μM Ca2+. In addition, DDT prevented coimmunoprecipitation of NCX1 and PtdIns(4)-5kinase. These results indicate that, for a proper MgATP up-regulation of NCX1, the enzyme responsible for PtdIns-4,5P2 synthesis must be (i) functionally competent and (ii) set in the NCX1 microenvironment closely associated to the exchanger. This kind of supramolecular structure is needed to optimize binding of the newly synthesized PtdIns-4,5P2 to its target region in the exchanger protein.  相似文献   
213.
214.
The molecular mechanism responsible for the regulation of the mitochondrial membrane proton conductance (G) is not clearly understood. This study investigates the role of the transmembrane potential (ΔΨm) using planar membranes, reconstituted with purified uncoupling proteins (UCP1 and UCP2) and/or unsaturated FA. We show that high ΔΨm (similar to ΔΨm in mitochondrial State IV) significantly activates the protonophoric function of UCPs in the presence of FA. The proton conductance increases nonlinearly with ΔΨm. The application of ΔΨm up to 220 mV leads to the overriding of the protein inhibition at a constant ATP concentration. Both, the exposure of FA-containing bilayers to high ΔΨm and the increase of FA membrane concentration bring about the significant exponential Gm increase, implying the contribution of FA in proton leak. Quantitative analysis of the energy barrier for the transport of FA anions in the presence and absence of protein suggests that FA remain exposed to membrane lipids while crossing the UCP-containing membrane. We believe this study shows that UCPs and FA decrease ΔΨm more effectively if it is sufficiently high. Thus, the tight regulation of proton conductance and/or FA concentration by ΔΨm may be key in mitochondrial respiration and metabolism.  相似文献   
215.
The performance of three different affinity and immunoaffinity subtraction spin columns was investigated for the removal of the most abundant proteins in human cerebrospinal fluid (CSF). A pool of human CSF was processed with the spin columns and both the bound and flow through fractions were compared with each other and with intact CSF using 1D gel electrophoresis and nanoLC–MALDI-TOF/TOF-MS analysis. MASCOT MS/MS ionscores were compared before and after processing with the columns. The non-specific co-removal of proteins bound to the high abundant proteins, so called “sponge effect” was also examined for each spin column. The reproducibility of one of the spin columns, ProteomeLab IgY-12 proteome partitioning spin column, was further investigated by isobaric tags for relative and absolute quantification (iTRAQ) labeling and MS/MS analysis. Overall, 173 unique proteins were identified on a 95% MudPIT confidence scoring level. For all three spin columns, the number of proteins identified and their MASCOT scores were increased up to 10 times. The largest degree of non-specific protein removal was observed for a purely affinity based albumin removal column, where 28 other proteins also were present. The ProteomeLab IgY-12 proteome partitioning spin column showed very high reproducibility when combined with iTRAQ labeling and MS/MS analysis. The combined relative standard deviation (R.S.D.) for the high abundant protein removal, iTRAQ labeling and nanoLC–MALDI-TOF/TOF-MS analysis was less than 17.5%.  相似文献   
216.
Oxidative modification of Trigonopsis variabilisd-amino acid oxidase in vivo is traceable as the conversion of Cys108 into a stable cysteine sulfinic acid, causing substantial loss of activity and thermostability of the enzyme. To simulate native and modified oxidase each as a microheterogeneity-resistant entity, we replaced Cys108 individually by a serine (C108S) and an aspartate (C108D), and characterized the purified variants with regard to their biochemical and kinetic properties, thermostability, and reactivity towards oxidation by hypochlorite. Tandem MS analysis of tryptic peptides derived from a hypochlorite-treated inactive preparation of recombinant wild-type oxidase showed that Cys108 was converted into cysteine sulfonic acid, mimicking the oxidative modification of native enzyme as isolated. Colorimetric titration of protein thiol groups revealed that in the presence of ammonium benzoate (0.12 mM), the two muteins were not oxidized at cysteines whereas in the wild-type enzyme, one thiol group was derivatized. Each site-directed replacement caused a conformational change in d-amino acid oxidase, detected with an assortment of probes, and resulted in a turnover number for the O2-dependent reaction with D-Met which in comparison with the corresponding wild-type value was decreased two- and threefold for C108S and C108D, respectively. Kinetic analysis of thermal denaturation at 50 °C was used to measure the relative contributions of partial unfolding and cofactor dissociation to the overall inactivation rate in each of the three enzymes. Unlike wild-type, C108S and C108D released the cofactor in a quasi-irreversible manner and were therefore not stabilized by external FAD against loss of activity. The results support a role of the anionic side chain of Cys108 in the fine-tuning of activity and stability of d-amino acid oxidase, explaining why C108S was a surprisingly poor mimic of the native enzyme.  相似文献   
217.
Using the method of room temperature phosphorescence (RTP), we divided air-dry pea (Pisum sativum L.) seeds subjected to accelerated ageing (40°C, 85% relative humidity) into three fractions: (I) high-quality seeds, (II) weakened seeds, and (III) dead seeds. In the process of ageing, seed germinability firstly decreased and then increased due to so-called “improved” seeds of fraction II, which returned to fraction I as judged from the RTP level; the germinability of these seeds became equal to that of fraction I seeds. Seeds capable of germination (fractions I and II) differed in the rates of imbibition, which depended on plasma membrane permeability (opened or closed water channels) but not on the presence of the seed coat. A low activation energy of seed imbibition in fraction II (less than 5 kcal/mol) indicates that water channels are open. A mercury-containing compound (5 μM p-chloromercuribenzoate (PCMB) reduced the rate of water uptake by these seeds, and dithiothreitol restored it. A high activation energy of fraction I seed imbibition (more than 12 kcal/mol) corresponded to the water uptake mainly across the lipid bilayer when water channels are closed. PCMB did not affect the rate of fraction I seed imbibition. We supposed that mature air-dry pea seeds had open water channels. During the first stages of fraction I seed imbibition, these channels were closed, limiting water uptake. NaF (100 μM), an inhibitor of phosphatase, prevented channel closing and accelerated the imbibition of fraction I seeds. It did not affect the imbibition rate of fraction II seeds, indicating their water channels to be opened. However, NaF did not affect the water uptake of “improved” fraction II seeds as well. It seems likely that their channels were closed during accelerated ageing but otherwise than via dephosphorylation. The results obtained indicate the possibility of water inflow regulation in the weakened seeds via the state of aquaporins, which form water channels in the membranes.  相似文献   
218.
The intrinsic fluorescence of smooth muscle myosin is sensitive to both nucleotide binding and hydrolysis. We have examined this relationship by making MDE mutants containing a single tryptophan residue at each of the seven positions found in the wild-type molecule. Previously, we have demonstrated that a conserved tryptophan residue (W512) is a major contributor to nucleotide-dependent changes of intrinsic fluorescence in smooth muscle myosin. In this study, an MDE containing all the endogenous tryptophans except W512 (W512 KO-MDE) decreases in intrinsic fluorescence upon nucleotide binding, demonstrating that the intrinsic fluorescence enhancement of smooth muscle myosin is not solely due to W512. Candidates for the observed quench of intrinsic fluorescence in W512 KO-MDE include W29 and W36. Whereas the intrinsic fluorescence of W36-MDE is only slightly sensitive to nucleotide binding, that of W29-MDE is paradoxically both quenched and blue-shifted upon nucleotide binding. Steady-state and time-resolved experiments suggest that fluorescence intensity changes of W29 involve both excited-state and ground-state quenching mechanisms. These results have important implications for the role of the N-terminal domain (residues 1-76) in smooth muscle myosin in the molecular mechanism of muscle contraction.  相似文献   
219.
A unique feature of the symbiotic association between legume plants and rhizobia is the plant-derived membrane which separates the symbionts within root nodule; this membrane is termed the peribacteroid membrane (PBM). Although this membrane plays a vital role in facilitating transport and other processes in nodules, little is known about the proteins that are associated with and are an integral part of it. The objective of this work was to apply modern methods of protein purification to the characterisation of proteins of peribacteroid membrane from nodules of yellow lupine (Lupines luteus). The 17-kDa protein was isolated from purified peribacteroid membrane using size exclusion and ion exchange chromatography (FPLC). The N-terminal amino acid sequence of this protein was determined; the sequence does not match any of the previously reported lupine and other legume sequences. Following detergent solubilisation of purified peribacteroid membrane, integral proteins of 15 to 20 kDa were purified by size exclusion chromatography.  相似文献   
220.
The redox properties of periplasmic protein disulfide isomerase (DsbA) from Escherichia coli were analyzed by measuring the equilibrium constant of the oxidation of reduced DsbA by oxidized glutathione. The experiments are based on the finding that the intrinsic tryptophan fluorescence of DsbA increases about threefold upon reduction of the enzyme, which can be explained by the catalytic disulfide bridge quenching the fluorescence of a neighboring tryptophan residue. From the specific fluorescence of DsbA equilibrated in the presence of different ratios of reduced and oxidized glutathione at pH 7, an equilibrium constant of 1.2 x 10(-4) M was determined, corresponding to a standard redox potential (E'0) of DsbA of -0.089 V. Thus, DsbA is a significantly stronger oxidant than cytoplasmic thioredoxins and its redox properties are similar to those of eukaryotic protein disulfide isomerase. The equilibrium constants for the DsbA/glutathione equilibrium were found to be strongly dependent on pH and varied from 2.5 x 10(-3) M to 3.9 x 10(-5) M between pH 4 and 8.5. The redox state-dependent fluorescence properties of DsbA should allow detailed physicochemical studies of the enzyme as well as the quantitative determination of the oxidized protein by fluorescence titration with dithiothreitol and open the possibility to observe bacterial protein disulfide isomerase "at work" during catalysis of oxidative protein folding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号