首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   20篇
  国内免费   2篇
  2023年   1篇
  2022年   7篇
  2021年   2篇
  2019年   4篇
  2018年   13篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   39篇
  2013年   45篇
  2012年   36篇
  2011年   36篇
  2010年   35篇
  2009年   29篇
  2008年   33篇
  2007年   57篇
  2006年   39篇
  2005年   35篇
  2004年   15篇
  2003年   10篇
  2002年   1篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   25篇
  1984年   40篇
  1983年   32篇
  1982年   46篇
  1981年   44篇
  1980年   34篇
  1979年   26篇
  1978年   17篇
  1977年   18篇
  1976年   12篇
  1975年   10篇
  1974年   5篇
  1973年   8篇
  1972年   1篇
排序方式: 共有800条查询结果,搜索用时 542 毫秒
141.
The analysis of the self-assembly mechanism of the tau microtubule-binding domain (MBD) could provide the information needed to develop an effective method for the inhibition of the tau filament formation because of its core region that forms the filament. The MBD domain in the living body consists of similar three or four 31- to 32-residue repeats, namely 3RMBD (R134) and 4RMBD (R1234), respectively. The filament formation of the MBD has been mainly investigated by fluorescence spectroscopy utilizing the β-sheet structure-binding signal sensor thioflavin. This method observes the aggregation indirectly, and provides no information on the time-dependent change in aggregation size or volume. Thus, to determine the structure necessary for initiating MBD self-association, the dynamic light scattering (DLS) method was applied to the analysis of the aggregations of 3RMBD, 4RMBD and their component single repeats and shown to be a powerful tool for directly analyzing filament formation. DLS analysis clearly showed that the building unit for initiating the aggregation is the intermolecular R3-R3 disulfide-bonded dimer for 3RMBD and the intramolecular R2-R3 disulfide-bonded monomer for 4RMBD, and their aggregation processes under physiological condition differ from each other, which has not been clearly revealed by the conventional fluorescence method. The repeat-number-dependent aggregation model of MBD, together with the function of each repeat, reported in this paper should help to devise a method of preventing tau PHF formation.  相似文献   
142.
The Sonic Hedgehog (Shh) signalling pathway plays an important role both in embryonic development and in adult stem cell function. Inappropriate regulation of this pathway is often due to dysfunction between two membrane receptors Patched (Ptc) and Smoothened (Smo), which lead to birth defects, cancer or neurodegenerative diseases. However, little is known about Ptc, the receptor of the Shh protein, and the way Ptc regulates Smo, the receptor responsible for the transduction of the signal. To develop structure-function studies of these receptors, we expressed human Ptc (hPtc) in the yeast Saccharomyces cerevisiae. We demonstrated that hPtc expressed in a yeast membrane fraction is able to interact with its purified ligand Shh, indicating that hPtc is produced in yeast in its native conformational state. Using Surface Plasmon Resonance technology, we showed that fluorinated surfactants preserve the ability of hPtc to interact with its ligand after purification. This is the first report on the heterologous expression and the purification of a native and stable conformation of the human receptor Ptc. This work will allow the scale-up of hPtc production enabling its biochemical characterization, allowing the development of new therapeutic approaches against diseases induced by Shh signalling dysfunction.  相似文献   
143.
Youg R. Thaker  Yin H. Yau 《FEBS letters》2009,583(7):1090-1095
Owing to the complex nature of V1VO ATPases, identification of neighboring subunits is essential for mechanistic understanding of this enzyme. Here, we describe the links between the V1 headpiece and the VO-domain of the yeast V1VO ATPase via subunit A and d as well as the VO subunits a and d using surface plasmon resonance and fluorescence correlation spectroscopy. Binding constants of about 60 and 200 nM have been determined for the a-d and d-A assembly, respectively. The data are discussed in light of subunit a and d forming a peripheral stalk, connecting the catalytic A3B3 hexamer with VO.

Structured summary

MINT-7012054: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by fluorescence correlation spectroscopy (MI:0052)MINT-7012041: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by surface plasmon resonance (MI:0107)MINT-7012028: d (uniprotkb:P32366) binds (MI:0407) to a (uniprotkb:P32563) by surface plasmon resonance (MI:0107)  相似文献   
144.
Formation of heterooligomeric complexes of human small heat shock proteins (sHsp) HspB6 (Hsp20) and HspB1 (Hsp27) was analyzed by means of native gel electrophoresis, analytical ultracentrifugation, chemical cross-linking and size-exclusion chromatography. HspB6 and HspB1 form at least two different complexes with apparent molecular masses 100–150 and 250–300 kDa, and formation of heterooligomeric complexes is temperature dependent. These complexes are highly mobile, easily exchange their subunits and are interconvertible. The stoichiometry of HspB1 and HspB6 in both complexes is close to 1/1 and smaller complexes are predominantly formed at low, whereas larger complexes are predominantly formed at high protein concentration. Formation of heterooligomeric complexes does not affect the chaperone-like activity of HspB1 and HspB6 if insulin or skeletal muscle F-actin was used as model protein substrates. After formation of heterooligomeric complexes the wild type HspB1 inhibits the rate of phosphorylation of HspB6 by cAMP-dependent protein kinase. The 3D mutant mimicking phosphorylation of HspB1 also forms heterooligomeric complexes with HspB6, but is ineffective in inhibition of HspB6 phosphorylation. Inside of heterooligomeric complexes HspB6 inhibits phosphorylation of HspB1 by MAPKAP2 kinase. Thus, in heterooligomeric complexes HspB6 and HspB1 mutually affect the structure of each other and formation of heterooligomeric complexes might influence diverse processes depending on small heat shock proteins.  相似文献   
145.
The ERV/ALR sulfhydryl oxidase domain is a versatile module adapted for catalysis of disulfide bond formation in various organelles and biological settings. Its four-helix bundle structure juxtaposes a Cys-X-X-Cys dithiol/disulfide motif with a bound flavin adenine dinucleotide (FAD) cofactor, enabling transfer of electrons from thiol substrates to non-thiol electron acceptors. ERV/ALR family members contain an additional di-cysteine motif outside the four-helix-bundle core. Although the location and context of this "shuttle" disulfide differs among family members, it is proposed to perform the same basic function of mediating electron transfer from substrate to the enzyme active site. We have determined by X-ray crystallography the structure of AtErv1, an ERV/ALR enzyme that contains a Cys-X4-Cys shuttle disulfide and oxidizes thioredoxin in vitro, and compared it to ScErv2, which has a Cys-X-Cys shuttle and does not oxidize thioredoxin at an appreciable rate. The AtErv1 shuttle disulfide is in a region of the structure that is disordered and thus apparently mobile and exposed. This feature may facilitate access of protein substrates to the shuttle disulfide. To test whether the shuttle disulfide region is modular and can confer on other enzymes oxidase activity toward new substrates, we generated chimeric enzyme variants combining shuttle disulfide and core elements from AtErv1 and ScErv2 and monitored oxidation of thioredoxin by the chimeras. We found that the AtErv1 shuttle disulfide region could indeed confer thioredoxin oxidase activity on the ScErv2 core. Remarkably, various chimeras containing the ScErv2 Cys-X-Cys shuttle disulfide were found to function efficiently as well. Since neither the ScErv2 core nor the Cys-X-Cys motif is therefore incapable of participating in oxidation of thioredoxin, we conclude that wild-type ScErv2 has evolved to repress activity on substrates of this type, perhaps in favor of a different, as yet unknown, substrate.  相似文献   
146.
The eukaryotic initiation factor 4E (eIF4E) serves as a master switch that controls mRNA translation through the promotive binding to eIF4G and the regulative binding with the endogenous inhibitor 4E-BP. Although the bindings of eIF4G and 4E-BP to eIF4E proceed through the common eIF4E recognition Y(X)4Lφ motif (X: variable, φ: hydrophobic) (first binding site), the relationship between their eIF4E binding mode and the functional difference is hardly known. Recently, we have clarified the existence and function of the second eIF4E binding site in 4E-BP. Surface plasmon resonance (SPR) analysis based on the sequential comparison between 4E-BP and eIF4GI clarified that eIF4G has the second binding site at the periphery of the 597SDVVL601 sequence and that it plays an auxiliary but indispensable function in stabilizing the binding of the first binding sequence 572YDREFLL578. The kinetic parameters of the interactions of the eIF4GI and 4E-BP2 fragment peptides with eIF4E showed that the association (ka) and dissociation (kd) rates of the former peptide are about three and two orders of magnitude lower than those of the latter peptide, respectively. This means that eIF4G has a potent resistive property for release from eIF4E, although its rate of binding to eIF4E is not as high as that of 4E-BP, that is, 4E-BP is apt to bind to and be released from eIF4E, as compared with eIF4G. Isothermal titration calorimetry (ITC) showed the opposite behavior between the second binding sites of eIF4GI and 4E-BP for the interaction with eIF4E. This clearly indicates the importance of the second binding region for the difference in function between eIF4G and 4E-BP for eIF4E translation.  相似文献   
147.
We report on the use of zeolites to limit the effects of reactive oxygen species (ROS) on human albumin under in vitro conditions. Zeolites of different structure type, channel size, channel polarity, and charge-compensating cation were screened for the elimination of ROS, notably HO, resulting from the Fenton reaction. A test based on ischemia-modified albumin (IMA) was used as a marker to monitor the activity of HO after co-exposure of human serum to these zeolites. Two commercial zeolites, faujasite (FAU 13×, channel opening 0.74 × 0.74 nm with Na+ as charge-compensating cation) and ferrierite (FER, channel opening 0.54 × 0.42 nm with H+ as charge-compensating cation), were found to reduce IMA formation by more than 65% due to removal of HO relative to reference values. It was established that partial ion exchange of the zeolites’ respective charge-compensating cation vs. Fe3+ implicated in the Fenton reaction plays a major role in HO deactivation process. Moreover, our results show that no saturation of the respective zeolite active sites occurred. This is possible only when ROS are actively converted to water molecules within the zeolite void system, which generates H+ ion transport.Because zeolites cannot be administered in blood, their use in medicine should be limited to extra corporeal circuits. Zeolites could be of use during cardiopulmonary bypass or hemodialysis procedures.  相似文献   
148.
Interactions of the polymerase X from the African Swine Fever Virus with the ssDNA have been studied, using quantitative fluorescence titration and fluorescence resonance energy transfer techniques. The primary DNA-binding subsite of the enzyme, independent of the DNA conformation, is located on the C-terminal domain. Association of the bound DNA with the catalytic N-terminal domain finalizes the engagement of the total DNA-binding site of the enzyme and induces a large topological change in the structure of the bound ssDNA. The free energy of binding includes a conformational transition of the protein. Large positive enthalpy changes accompanying the ASFV pol X-ssDNA association indicate that conformational changes of the complex are induced by the engagement of the N-terminal domain. The enthalpy changes are offset by large entropy changes accompanying the DNA binding to the C-terminal domain and the total DNA-binding site, predominantly resulting from the release of water molecules.  相似文献   
149.
Dormancy release in freshly matured, imbibed annual ryegrass (Lolium rigidum) seeds is inhibited by light and involves a decrease in seed sensitivity to abscisic acid. Other processes involved in dormancy release in the dark were investigated by measuring seed storage compound mobilisation and the activity of cell wall-degrading enzymes. Activities of endo-β-mannanase and total peroxidase were higher in dark-stratified compared to light-stratified seeds, indicating that weakening of the structures constraining the embryo was accelerated in the dark. A dramatic degradation of storage proteins in light-stratified seeds, accompanied by induction of a high molecular mass protease, suggests that maintenance of storage(-like) proteins is also important in dark-mediated dormancy release. α-Amylase activity was induced in dark-stratified seeds at least 48 h prior to radicle emergence upon transfer to conditions permitting germination, or in light-stratified seeds supplied with exogenous gibberellin A4. This suggests that (a) α-amylase is involved in stimulation of germination of non-dormant L. rigidum seeds, and (b) dark-stratified seeds have an increased sensitivity to gibberellins which permits the rapid induction of α-amylase activity upon exposure to germination conditions. Overall, it appears that a number of processes, although possibly minor in themselves, occur in concert during dark-stratification to contribute to dormancy release.  相似文献   
150.
Extracellular ATP (eATP) plays essential roles in plant growth, development, and stress tolerance. Extracellular ATP-regulated stomatal movement of Arabidopsis thaliana has been reported. Here, ATP was found to promote stomatal opening of Vicia faba in a dose-dependent manner. Three weakly hydrolysable ATP analogs (adenosine 5′-O-(3-thio) triphosphate (ATPγS), 3′-O-(4-benzoyl) benzoyl adenosine 5′-triphosphate (Bz-ATP) and 2-methylthio-adenosine 5′-triphosphate (2meATP)) showed similar effects, indicating that ATP acts as a signal molecule rather than an energy charger. ADP promoted stomatal opening, while AMP and adenosine did not affect stomatal movement. An ATP-promoted stomatal opening was blocked by the NADPH oxidase inhibitor diphenylene iodonium (DPI), the reductant dithiothreitol (DTT) or the Ca2+ channel blockers GdCl3 and LaCl3. A hyperpolarization-activated Ca2+ channel was detected in plasma membrane of guard cell protoplast. Extracellular ATP and weakly hydrolyzable ATP analogs activated this Ca2+ channel significantly. Extracellular ATP-promoted Ca2+ channel activation was markedly inhibited by DPI or DTT. These results indicated that eATP may promote stomatal opening via reactive oxygen species that regulate guard cell plasma membrane Ca2+ channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号