首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2983篇
  免费   314篇
  国内免费   426篇
  3723篇
  2024年   13篇
  2023年   58篇
  2022年   61篇
  2021年   71篇
  2020年   106篇
  2019年   104篇
  2018年   133篇
  2017年   133篇
  2016年   117篇
  2015年   150篇
  2014年   148篇
  2013年   201篇
  2012年   152篇
  2011年   156篇
  2010年   111篇
  2009年   152篇
  2008年   129篇
  2007年   134篇
  2006年   132篇
  2005年   126篇
  2004年   98篇
  2003年   97篇
  2002年   103篇
  2001年   92篇
  2000年   67篇
  1999年   94篇
  1998年   68篇
  1997年   75篇
  1996年   65篇
  1995年   58篇
  1994年   55篇
  1993年   39篇
  1992年   39篇
  1991年   49篇
  1990年   26篇
  1989年   38篇
  1988年   22篇
  1987年   31篇
  1986年   20篇
  1985年   30篇
  1984年   25篇
  1983年   18篇
  1982年   36篇
  1981年   18篇
  1980年   18篇
  1979年   15篇
  1978年   13篇
  1977年   8篇
  1976年   6篇
  1974年   6篇
排序方式: 共有3723条查询结果,搜索用时 31 毫秒
51.
The dissolved inorganic carbon (DIC) cycle in a softwater lake was studied using natural variations of the stable isotopes of carbon,12C and13C. During summer stratification there was a progressive decrease in epilimnion DIC concentration with a concomitant increase in 13CDIC), due to preferential uptake of12C by phytoplankton and a change in the dominant CO2 source from inflow andin situ oxidation to invasion from the atmosphere. There was an increase in hypolimnion DIC concentration throughout summer with a concomitant general decrease in 13CDIC from oxidation of the isotopically light particulate organic carbon that sank down through the thermocline from the epilimnion.Mass balance calculations of DI12C and DI13C in the epilimnion for the summer (June 23–September 25) yield a mean rate of net conversion of DIC to organic carbon (Corg) of 430 ± 150 moles d-1 (6.5 ± 1.8 m moles m-2 d-1. Net CO2 invasion from the atmosphere was 420 ± 120 moles d-1 (6.2 ± 1.8 m moles m-2 d-1) with an exchange coefficient of 0.6 ± 0.3m d-1. These results imply that at least for the summer months the phytoplankton obtained about 90% of their carbon from atmosphere CO2. About 50% of CO2 invasion and conversion to Corg for the summer occurred during a two week interval in mid-summer.DIC concentration increased in the hypolimnion at a rate of 350 ± 70 moles DIC d-1 during summer stratification. The amount of DIC added to the hypolimnion was equivalent to 75 ± 20% of net conversion of DIC to Corg in the euphotic zone over spring and summer implying rapid degradation of POC in the hypolimnion. The 13C of DIC added to the deep water (-22.) was too heavy to have been derived from oxidation of particulate organic carbon alone. About 20% of the added DIC must have diffused from hypolimnetic sediments where relatively heavy CO2 (-7) was produced by a combination of POC oxidation and as a by-product of methanogenesis.  相似文献   
52.
The concentration of CO2 in stream water is a product of not only instream metabolism but also upland, riparian, and groundwater processes and as such can provide an integrative measure of whole catchment soil respiration. Using a 5-year dataset of pH, alkalinity, Ca2+, and Mg2+ in surface water of the West Fork of Walker Branch in eastern Tennessee in conjunction with a hydrological flowpath chemistry model, we investigated how CO2 concentrations and respiration rates in stream, bedrock, and soil environments vary seasonally and interannually. Dissolved inorganic carbon concentration was highest in summer and autumn (P < 0.05) although the proportion as free CO2 (pCO2) did not vary seasonally (P > 0.05). Over the 5 years, pCO2 was always supersaturated with respect to the atmosphere ranging from 374 to 3626 ppmv (1.0- to 10.1-fold greater than atmospheric equilibrium), and CO2 evasion from the stream to the atmosphere ranged from 146 to 353 mmol m−2 d−1. Whereas pCO2 in surface water exhibited little intra-annual or interannual variation, distinct seasonal patterns in soil and bedrock pCO2 were revealed by the catchment CO2 model. Seasonally, soil pCO2 increased from a winter low of 8167 ppmv to a summer high of 27,068 ppmv. Driven by the seasonal variation in gas levels, evasion of CO2 from soils to the atmosphere ranged from 83 mmol m−2 d−1 in winter to 287 mmol m−2 d−1 in summer. The seasonal variation in soil CO2 tracked soil temperature (r 2= 0.46, P < 0.001) and model-derived estimates of CO2 evasion rate from soils agreed with previously reported fluxes measured using chambers (Pearson correlation coefficient = 0.62, P < 0.05) supporting the model assumptions. Although rates of CO2 evasion were similar between the stream and soils, the overall rate of evasion from the channel was only 0.4% of the 70,752 mol/d that evaded from soils due to the vastly different areas of the two subsystems. Our model provides a means to assess whole catchment CO2 dynamics from easily collected and measured stream-water samples and an approach to study catchment scale variation in soil ecosystem respiration. Received 24 July 1997; accepted 14 November 1997.  相似文献   
53.
Chloramphenicol acetyl transferase (CAT) gene was used as a reporter gene to assess the conditions for polyethylene glycol (PEG)-mediated transfection of kiwifruit protoplasts. The effect of plasmid concentration and the presence of carrier DNA were each assessed by analysing CAT activity in transfected protoplasts using thin-layer chromatography (TLC) autoradiographic detection of acetylated chloramphenicol. A gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) non-radioactive method was developed for monitoring CAT gene activity. This method provides a high speed of analysis (30 min) and precise means of detecting acetylated products at the nanomolar level, enabling quantification at very low transfection rates. Using this method we optimized plasmid and PEG concentration and also assessed the effect of heat shock on transfection. The best CAT activity was obtained using 30% polyethylene glycol 4000 and by submitting protoplasts to heat shock (45 °C, 5 min) prior to transfection.  相似文献   
54.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.  相似文献   
55.
Exposure of microbial cells to sub-lethal stresses is known to increase cell robustness. In this work, a two-compartment bioreactor in which microbial cells are stochastically exposed to sub-lethal temperature stresses has been used in order to investigate the response of the stress sensitive Bifidobacterium bifidum THT 0101 to downstream processing operations. A stochastic model validated by residence time distribution experiments has shown that in the heat-shock configuration, a two-compartment bioreactor (TCB) allows the exposure of microbial cells to sub-lethal temperature of 42 °C for a duration comprised between 100 and 300 s. This exposure resulted in a significant increase of cell resistance to freeze–drying by comparison with cells cultivated in conventional bioreactors or in the TCB in the cold shock mode (CS-TCB). The mechanism behind this robustness seems to be related with the coating of microbial cells with exopolysaccharide (EPS), as assessed by the change of the zeta potential and the presence of higher EPS concentration after heat shock. Conditioning of Bifidobacteria on the basis of the heat shock technique is interesting from the practical and economical point of view since this strategy can be directly implemented in the bioreactor during stationary phase preceding cell recovery and freeze–drying.  相似文献   
56.
We present a new synthesis, based on a suite of complementary approaches, of the primary production and carbon sink in forests of the 25 member states of the European Union (EU‐25) during 1990–2005. Upscaled terrestrial observations and model‐based approaches agree within 25% on the mean net primary production (NPP) of forests, i.e. 520±75 g C m?2 yr?1 over a forest area of 1.32 × 106 km2 to 1.55 × 106 km2 (EU‐25). New estimates of the mean long‐term carbon forest sink (net biome production, NBP) of EU‐25 forests amounts 75±20 g C m?2 yr?1. The ratio of NBP to NPP is 0.15±0.05. Estimates of the fate of the carbon inputs via NPP in wood harvests, forest fires, losses to lakes and rivers and heterotrophic respiration remain uncertain, which explains the considerable uncertainty of NBP. Inventory‐based assessments and assumptions suggest that 29±15% of the NBP (i.e., 22 g C m?2 yr?1) is sequestered in the forest soil, but large uncertainty remains concerning the drivers and future of the soil organic carbon. The remaining 71±15% of the NBP (i.e., 53 g C m?2 yr?1) is realized as woody biomass increments. In the EU‐25, the relatively large forest NBP is thought to be the result of a sustained difference between NPP, which increased during the past decades, and carbon losses primarily by harvest and heterotrophic respiration, which increased less over the same period.  相似文献   
57.
In view of the pressing problem that appears in our region (Asturias, north of Spain) with the residues from the cider production, it was decided to test this kind of material as a co-substrate joint with slaughterhouse waste in a laboratory unit.  相似文献   
58.
由于在绝缘材料和气体放电技术方面的进展,处于紫外波段的准分子激光器已经在工业、科学研究,特别是医学等领域成为主要应用工具。在本文中,我们将介绍新颖紧凑型准分子激光器在医学中的应用。此外,在文章中对紧凑型准分子激光器所采用的关键技术,诸如固态开关、电晕预电离和金属,陶瓷腔等技术进行了详细的讨论。  相似文献   
59.
以沙枣和孩儿拳头2年生盆栽苗为材料,采用称重控水的方法设置4个土壤含水量梯度(CK、T1、T2、T3),研究不同干旱胁迫对沙枣和孩儿拳头气体交换特征与保护酶的影响.结果显示:(1)干旱胁迫不仅引起两物种净光合速率、蒸腾速率、气孔导度、胞间 CO2 浓度的下降,而且使其日变化曲线在一定程度上发生改变;在轻度(T1)和中度胁迫(T2)下,两物种净光合速率下降主要是由气孔因素引起的,重度胁迫(T3)下,净光合速率下降主要是非气孔因素引起的.(2)随着干旱胁迫增加,沙枣瞬时水分利用效率呈现增加下降再增加趋势,孩儿拳头呈现下降趋势;两物种表观光能利用效率显著下降,重度胁迫下(T3),下降率达50%左右,孩儿拳头表观光能利用效率对干旱胁迫比较敏感;两物种表观CO2利用效率总体呈现下降趋势,沙枣表观CO2利用效率日进程经历了单峰(T1)、双峰(T2)、单峰(T3)的变化,孩儿拳头各处理的表观CO2利用效率日变化均呈现单峰曲线.(3)随着干旱胁迫加剧,两物种叶片的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性先升高后降低,土壤含水量高于12.8%时,两物种SOD酶活性均高于CK,随着土壤含水量的降低,SOD酶活性低于CK;重度胁迫下(T3),沙枣POD酶活性虽然有所下降,但仍高于CK,而孩儿拳头则和CK无显著差异;两物种CAT酶活性在重度胁迫下(T3)显著低于CK;随着干旱胁迫程度的增加,两物种叶片中的丙二醛(MDA)含量均呈现升高趋势,孩儿拳头脂质过氧化程度受干旱胁迫的影响较大.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号