首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5335篇
  免费   753篇
  国内免费   175篇
  2024年   13篇
  2023年   92篇
  2022年   73篇
  2021年   123篇
  2020年   192篇
  2019年   256篇
  2018年   233篇
  2017年   254篇
  2016年   256篇
  2015年   237篇
  2014年   295篇
  2013年   296篇
  2012年   262篇
  2011年   258篇
  2010年   230篇
  2009年   318篇
  2008年   331篇
  2007年   318篇
  2006年   271篇
  2005年   256篇
  2004年   226篇
  2003年   175篇
  2002年   189篇
  2001年   182篇
  2000年   151篇
  1999年   131篇
  1998年   121篇
  1997年   72篇
  1996年   79篇
  1995年   58篇
  1994年   55篇
  1993年   54篇
  1992年   32篇
  1991年   35篇
  1990年   24篇
  1989年   19篇
  1988年   12篇
  1987年   13篇
  1986年   15篇
  1985年   9篇
  1984年   12篇
  1983年   8篇
  1982年   9篇
  1981年   3篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
排序方式: 共有6263条查询结果,搜索用时 31 毫秒
851.
852.
853.
854.
Compared to other organisms, such as vascular plants or mosses, lichen‐forming fungi have a high number of species occurring in both northern and southern hemispheres but are largely absent from intermediate, tropical latitudes. For instance, ca. 160 Antarctic species also occur in polar areas or mountainous temperate regions of the northern hemisphere. Early interpretations of this particular distribution pattern were made in terms of vicariance or long‐distance dispersal. However, it was not until the emergence of phylogenetics and the possibility of dating past diversification and colonization events that these initial hypotheses started to be evaluated. The premise of a relatively recent colonization of the southern hemisphere by boreal lichens through long‐distance dispersal has gained support in recent studies based on either the comparison of genetic affinities (i.e., tree topology) or more robust, statistical migratory models. Still, the scarcity of such studies and a concern that taxonomic concepts for bipolar lichens are often too broad preclude the generation of sound explanations on the mechanisms and origin of such fascinating disjunct distributions. This review provides an up‐to‐date overview of bipolar distributions in lichen‐forming fungi and their photobionts. Evidence provided by recent, molecular‐based studies as well as data on the type of lichen reproduction, dispersal ability, photobiont identity and availability, and habitat preferences are brought together to discuss how and when these distributions originated and their genetic footprints. Ideas for future prospects and research are also discussed.  相似文献   
855.
856.
857.
Tropical forest management often focuses on a few high‐value timber species because they are thought to be the most vulnerable in logged forests. However, other tree species may be vulnerable to secondary effects of logging, like loss of vertebrate dispersers. We examined vulnerability of tree species to loss of vertebrate dispersers in Mabira, a heavily disturbed tropical rainforest in Uganda. Fruit characteristics and shade tolerance regimes of 269 tree species were compiled. Stem densities of tree species producing fruits of various sizes and having different shade tolerance regimes were computed for Mabira and compared with densities of conspecifics in Budongo, a less disturbed forest with similar floral composition. Seventy per cent of tree species in Mabira are animal‐dispersed, of which 10% are large‐fruited light demanders. These species are the most vulnerable because they rarely recruit beneath adult conspecifics and are exclusively dispersed by large vertebrates, also vulnerable in heavily disturbed forests. Comparison of densities between Mabira and Budongo showed that large‐fruited light demanders had a lower density in Mabira. Other categories of tree species had similar densities in both forests. It is plausible that the low density of large‐fruited light demanders is due to limited recruitment caused by dispersal limitations.  相似文献   
858.
赵永欣  李孟华  赵要风 《遗传》2017,39(11):958-973
中国地方绵羊品种资源丰富,部分品种具有繁殖力高、毛皮品质好、多角、多乳头、大尾脂、抗逆性强等独特性状,这些遗传资源引起了学者们对其进行深入研究的兴趣,但目前仍然存在绵羊起源问题的争议,缺乏对我国绵羊的遗传多样性进行全面系统研究等问题。本文综述了绵羊起源、品种分化等方面的研究进展,并从父系、母系、常染色体分子标记等不同层面介绍了中国绵羊遗传多样性的研究概况,为中国绵羊遗传资源的保护和利用、绵羊新品种(系)的培育以及我国绵羊产业良性发展提供参考。  相似文献   
859.
The pace of climate change in the Arctic is dramatic, with temperatures rising at a rate double the global average. The timing of flowering and fruiting (phenology) is often temperature dependent and tends to advance as the climate warms. Herbarium specimens, photographs, and field observations can provide historical phenology records and have been used, on a localised scale, to predict species’ phenological sensitivity to climate change. Conducting similar localised studies in the Canadian Arctic, however, poses a challenge where the collection of herbarium specimens, photographs, and field observations have been temporally and spatially sporadic. We used flowering and seed dispersal times of 23 Arctic species from herbarium specimens, photographs, and field observations collected from across the 2.1 million km2 area of Nunavut, Canada, to determine (1) which monthly temperatures influence flowering and seed dispersal times; (2) species’ phenological sensitivity to temperature; and (3) whether flowering or seed dispersal times have advanced over the past 120 years. We tested this at different spatial scales and compared the sensitivity in different regions of Nunavut. Broadly speaking, this research serves as a proof of concept to assess whether phenology–climate change studies using historic data can be conducted at large spatial scales. Flowering times and seed dispersal time were most strongly correlated with June and July temperatures, respectively. Seed dispersal times have advanced at double the rate of flowering times over the past 120 years, reflecting greater late‐summer temperature rises in Nunavut. There is great diversity in the flowering time sensitivity to temperature of Arctic plant species, suggesting climate change implications for Arctic ecological communities, including altered community composition, competition, and pollinator interactions. Intraspecific temperature sensitivity and warming trends varied markedly across Nunavut and could result in greater changes in some parts of Nunavut than in others.  相似文献   
860.
The Caribbean archipelago is a region with an extremely complex geological history and an outstanding plant diversity with high levels of endemism. The aim of this study was to better understand the historical assembly and evolution of endemic seed plant genera in the Caribbean, by first determining divergence times of endemic genera to test whether the hypothesized Greater Antilles and Aves Ridge (GAARlandia) land bridge played a role in the archipelago colonization and second by testing South America as the main colonization source as expected by the position of landmasses and recent evidence of an asymmetrical biotic interchange. We reconstructed a dated molecular phylogenetic tree for 625 seed plants including 32 Caribbean endemic genera using Bayesian inference and ten calibrations. To estimate the geographic range of the ancestors of endemic genera, we performed a model selection between a null and two complex biogeographic models that included timeframes based on geological information, dispersal probabilities, and directionality among regions. Crown ages for endemic genera ranged from Early Eocene (53.1 Ma) to Late Pliocene (3.4 Ma). Confidence intervals for divergence times (crown and/or stem ages) of 22 endemic genera occurred within the GAARlandia time frame. Contrary to expectations, the Antilles appears as the main ancestral area for endemic seed plant genera and only five genera had a South American origin. In contrast to patterns shown for vertebrates and other organisms and based on our sampling, we conclude that GAARlandia did not act as a colonization route for plants between South America and the Antilles. Further studies on Caribbean plant dispersal at the species and population levels will be required to reveal finer‐scale biogeographic patterns and mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号