首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   88篇
  国内免费   11篇
  2024年   6篇
  2023年   10篇
  2022年   17篇
  2021年   16篇
  2020年   12篇
  2019年   12篇
  2018年   9篇
  2017年   21篇
  2016年   14篇
  2015年   19篇
  2014年   22篇
  2013年   25篇
  2012年   21篇
  2011年   13篇
  2010年   5篇
  2009年   10篇
  2008年   12篇
  2007年   19篇
  2006年   17篇
  2005年   8篇
  2004年   11篇
  2003年   7篇
  2002年   15篇
  2001年   9篇
  2000年   3篇
  1999年   7篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   9篇
  1994年   2篇
  1993年   6篇
  1992年   11篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有415条查询结果,搜索用时 281 毫秒
51.
Effects of two ventilation methods (forced and natural) and two photosynthetic photon fluxes (PPF, 150 and 250 μmol m−2 s−1) on the photoautotrophic growth of in vitro cultured coffee (Coffea arabusta) plantlets were investigated. Number of air exchanges was 2.7, 5.9 and 3.9 h−1 for forced low rate, forced high rate and natural ventilation, respectively. Single node cuttings of in vitro cultured coffee plantlets were cultured on Florialite, a mixture of vermiculite and cellulose fibers with high air porosity, emerged in liquid half strength basal MS medium, without sucrose, vitamins and plant growth regulators. The study included 40 days in the in vitro stage and 10 days in the ex vitro stage. Mean fresh and dry weights, leaf area, shoot and root lengths and net photosynthetic rate per plantlet were significantly greater in forced high rate treatments compared with those in natural and forced low rate treatments. PPF had a distinct effect on shoot length suppression and root elongation of coffee plantlets in forced high rate treatments. The control of carbon dioxide concentration inside the culture box according to the plant demand when growing was easy with the forced ventilation method in photoautotrophic micropropagation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
52.
Nodal explants of Annona squamosa L. and Annona muricata L. were cultured in vitro under various types of ventilation: airtight vessel (sealed condition; number of air exchange 0.1 h–1), natural ventilation (via a polypropylene membrane; number of air exchange 1.5 h–1), and forced ventilation (5.0 cm3 min–1 in a 60 cm3 vessel; number of air exchange 5.0 h–1). In both species, numbers of leaves, leaf areas and numbers of nodes per shoot increased with improving standards of ventilation, while leaf abscissions were substantially reduced; all the leaves had abscised in the airtight vessels after 12–15 days, but none had done so with forced ventilation. Flower-bud abscission in A. muricatashowed a similar trend after 21 days. These effects were associated with reductions in the accumulation of ethylene within the culture vessels, produced by increasing the efficiency of ventilation; ethylene was not detected in those fitted with a forced ventilation system. CO2 concentrations in culture headspaces and the net photosynthetic rates of the plantlets were also evaluated. CO2 concentrations decreased well below the ambient in the natural and airtight vessels; however, under forced ventilation, CO2 concentrations were significantly higher during the photoperiod, compared to those of the natural ventilation and airtight vessel treatments. In general, net photosynthetic rates per unit leaf area increased with increasing photosynthetic photon flux (PPF) and rates were highest in plantlets grown under forced ventilation, intermediate under natural ventilation and lowest in the airtight vessels.Eighteen different media were investigated for their effects on multiple shoot induction in both species. The best medium for multiple shoot induction and growth in A. squamosa was Murashige and Skoog medium (MS) + 6-benzylaminopurine (BA; 1.5 mg l–1) + casein hydrolysate (1.0 g l–1) and for A. muricata MS + BA (1.0 mg l–1) + naphthaleneacetic acid (NAA; 0.1 mg l–1).  相似文献   
53.
Thermo-osmotic gas supply not detected in Avicennia marina seedlings   总被引:2,自引:0,他引:2  
Ethane was used as tracer gas to assess the likelihood of thermo-osmotically induced mass-flow in the aerenchyma of Avicennia marina seedlings without pneumatophores. Ethane movement was measured in darkness and with illumination at approximately 600 µ mol m–2s–1 provided to the leaves and stem, with the expectation that leaf warming under illumination would provide for thermo-osmotic flow. In some seedlings the flow increased with illumination, and in others it either decreased or remained unchanged. Overall, there was no statistically significant difference in the conductance to ethane between darkened illuminated plants, and the rates of ethane movement were consistent with an average diffusive conductance to oxygen down the stem of 0.22 × 10–19m3 s–1. it was concluded that there was no evidence for thermo-osmotically induced in this case.  相似文献   
54.
55.
Summary A technical approach, in terms of air quality, implies the review of all components within the air conditioning system and the check of their characteristics, as far as contamination sources are concerned. The contribution introduces the parameters to be examined and specifies the importance of validation.  相似文献   
56.
57.
《Journal of morphology》2017,278(8):1075-1090
Musculo‐skeletal morphology is an indispensable source for understanding functional adaptations. Analysis of morphology of the branchial apparatus of Hexanchiform sharks can provide insight into aspects of their respiration that are difficult to observe directly. In this study, I compare the structure of the musculo‐skeletal system of the gill apparatus of Heptranchias perlo and Squalus acanthias in respect to their adaptation for one of two respiratory mechanisms known in sharks, namely, the active two‐pump (oropharyngeal and parabranchial) ventilation and the ram‐jet ventilation. In both species, the oropharyngeal pump possesses two sets of muscles, one for compression and the other for expansion. The parabranchial pump only has constrictors. Expansion of this pump occurs only due to passive elastic recoil of the extrabranchial cartilages. In Squalus acanthias the parabranchial chambers are large and equipped by powerful superficial constrictors. These muscles and the outer walls of the parabranchial chambers are much reduced in Heptranchias perlo , and thus it likely cannot use this pump. However, this reduction allows for vertical elongation of outer gill slits which, along with greater number of gill pouches, likely decreases branchial resistance and, at the same time, increases the gill surface area, and can be regarded as an adaptation for ram ventilation at lower speeds.  相似文献   
58.
The examples and clinical cases presented in this section are not intended to be considered as absolute models in terms of image quality or device parameter settings. They must initiate an individual analysis according to CT parameters and image quality. Nevertheless, they present practically different CT levels, which can be used according to the clinical context and the type of device.  相似文献   
59.
The relative timing between operculum and pectoral fin motion was examined in swimming bluegill Lepomis macrochirus to determine if respiratory fluid flows from the operculum might have an effect on flow over the pectoral fin. Five bluegill were filmed swimming at speeds from 0·5 to 1·5 body (total) lengths s−1. The timing of opercular pumping and pectoral fin beating was noted and analysed using circular statistics. Fish tended to ventilate their gills every second or third pectoral fin beat. While locomotion and ventilation had different frequencies, however, they were synchronized: fish maintained a consistent phase relationship between them. Thus, within pectoral fin beats when the operculum pumps, the jet consistently occurred during pectoral fin abduction, ending just after the fin was fully abducted and beginning adduction. Based on the distance between the opercular slit and the pectoral fin base, the jet was estimated to reach the fin during maximum abduction. Dye flow visualization confirmed this estimate, revealing that the opercular flow wraps around the base of the fin during peak abduction, when it is likely to have little hydrodynamic effect.  相似文献   
60.
The involvement of ethylene in the vitro development of shoots from nodal segments of two cultivars of carnation (Dianthus caryophyllus L.) was studied. Shoots of cv. Barbaret Antares showed low hyperhydricity in contrast with the high levels showed by cv. Barbaret Tanga when both were cultured in airtight culture vessels. Longer shoots were produced, in both cases, when the rate of gas exchange in the culture vessel was increased by using vented closures, which also prevented hyperhydricity and increased the multiplication coefficient in cultures of Barbaret Tanga.The two cultivars produced ethylene throughout the culture period but, a higher amount was produced during the first, second and fourth weeks in culture by the cultivar more sensitive to ventilation (Barbaret Tanga). Trapping ethylene did not produce any effect on cv. Barbaret Antares but improved the quality of cv. Barbaret Tanga explants, decreasing hyperhydricity and increasing the number of shoots, the length of the main shoot and the multiplication coefficient. These effects were more marked when ethylene was trapped during the first two weeks in culture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号