首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28037篇
  免费   1387篇
  国内免费   929篇
  2024年   19篇
  2023年   337篇
  2022年   545篇
  2021年   690篇
  2020年   640篇
  2019年   879篇
  2018年   963篇
  2017年   529篇
  2016年   661篇
  2015年   824篇
  2014年   1753篇
  2013年   1999篇
  2012年   1103篇
  2011年   1679篇
  2010年   1377篇
  2009年   1512篇
  2008年   1704篇
  2007年   1688篇
  2006年   1534篇
  2005年   1347篇
  2004年   1177篇
  2003年   1009篇
  2002年   957篇
  2001年   565篇
  2000年   501篇
  1999年   490篇
  1998年   536篇
  1997年   424篇
  1996年   350篇
  1995年   364篇
  1994年   331篇
  1993年   256篇
  1992年   213篇
  1991年   174篇
  1990年   154篇
  1989年   130篇
  1988年   114篇
  1987年   111篇
  1986年   85篇
  1985年   92篇
  1984年   112篇
  1983年   103篇
  1982年   93篇
  1981年   72篇
  1980年   63篇
  1979年   43篇
  1978年   19篇
  1977年   13篇
  1976年   6篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
51.
Abstract

Recent structures of the potassium channel provide an essential beginning point for explaining how the pore is gated between open and closed conformations by changes in membrane voltage. Yet, the molecular details of this process and the connections to transmembrane gradients are not understood. To begin addressing how changes within a membrane environment lead to the channel’s ability to sense shifts in membrane voltage and to gate, we performed double-bilayer simulations of the Kv1.2 channel. These double-bilayer simulations enable us to simulate realistic voltage drops from resting potential conditions to depolarized conditions by changes in the bath conditions on each side of the bilayer. Our results show how the voltage sensor domain movement responds to differences in transmembrane potential. The initial voltage sensor domain movement, S4 in particular, is modulated by the gating charge response to changes in voltage and is initially stabilized by the lipid headgroups. We show this response is directly coupled to the initial stages of pore domain motion. Results presented here provide a molecular model for how the pre-gating process occurs in sequential steps: Gating charge response, movement and stabilization of the S4 voltage sensor domain, and movement near the base of the S5 region to close the pore domain.  相似文献   
52.
53.
54.
Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article.  相似文献   
55.
56.
57.
The chiral isomers of the two potent simplified RTX-based vanilloids, compounds 2 and 3, were synthesized employing highly enantioselective PTC alkylation and evaluated as hTRPV1 ligands. The analysis indicated that the R-isomer was the eutomer in binding affinity and functional activity. The agonism of compound 2R was comparable to that of RTX. Docking analysis of the chiral isomers of 3 suggested the basis for its stereospecific activity and the binding mode of 3R.  相似文献   
58.
    
A peptide corresponding to residues 26–41 of α-bungarotoxin, and closed by a disulfide bond between two cysteine residues at the amino and C terminal ends of the peptide, was synthesized and the monomeric form was purified. The peptide, which represents the exposed part of the long central loop of the toxin molecule, was examined for binding to acetylcholine receptor. The peptide was shown by radiometric titrations to bind radiolabeled receptor, and radiolabeled peptide was bound by receptor. The specificity of the binding was confirmed by inhibition with the parent toxin. A synthetic analog of the peptide in which Trp-28 was replaced by glycine had very little (10%) of the original activity. Succinylation of the amino groups of the peptide resulted in virtually complete (98%) loss of the binding activity. These results indicate that a shortened loop peptide corresponding to the region 26–41 of α-bungarotoxin exhibits binding activities mimicking those of the parent molecule. In this region, Trp-28, and one or both of Lys-26 and Lys-38, are essential contact residues in the binding to receptor.  相似文献   
59.
The effects of a cow's milk diet on receptor activity and histamine metabolism in gastric glands and mucosa isolated from adult rats were examined. The milk diet was associated with (1) a decreased mobilization of H2 receptors by histamine and (2) an increased mobilization of PGE2 (prostaglandin E2) receptors in mucous cells (cytoprotective effect) and parietal cells (antiacid effect). These changes are not observed for the receptors reducing pentagastrin- and histamine-induced gastric acid secretion (pancreatic/enteroglucagons, somatostatin) and stimulating mucus, bicarbonate and pepsin secretions in the rat (secretin). Cimetidine produced a parallel displacement of the histamine dose-response curve, suggesting competitive inhibition between this classical H2 receptor antagonist and histamine in the two experimental groups. Prostaglandins and other components in milk such as EGF (epidermal growth factor) and somatostatin might therefore protect gastric mucosa by a differential control of PGE2 and histamine H2 receptor activity eitherdirectly (PGE2 in milk) orindirectly (inhibition of endogeneous histamine synthesis/release and stimulation of PGE-I synthesis/release).  相似文献   
60.
The synthesis of a tritiated derivative of the 5-HT1A photoaffinity probe 8-methoxy-2-[N-n-propyl, N-3-(2-nitro-4-azidophenyl)aminopropyl]aminotetralin ([3H]8-methoxy-3'-NAP-amino-PAT) allowed the use of this probe for attempting the irreversible labeling of specific binding sites in rat brain membranes. Sodium dodecyl-sulfate-polyacrylamide gel electrophoresis of proteins solubilized from hippocampal microsomal membranes that had been incubated with 20 nM [3H]8-methoxy-3'-NAP-amino-PAT under UV light revealed a marked incorporation of 3H label into a 63-kilodalton protein termed PI. As expected of a possible correspondence between PI and 5-HT1A receptor binding sites, 3H labeling by the photoaffinity probe could be prevented by selective 5-HT1A ligands such as 8-hydroxy-2-(di-n-propylamino)tetralin, ipsapirone, buspirone, and gepirone and by N-ethylmaleimide, but not by the 5-HT2 antagonist ketanserin, noradrenaline- and dopamine-related drugs, monoamine oxidase inhibitors, and chlorimipramine. Furthermore, the regional and subcellular distributions of PI were identical to those of specific 5-HT1A binding sites. These results indicated that the binding subunit of the 5-HT1A receptor is a 63-kilodalton protein with a functionally important sulfhydryl group(s).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号