首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4697篇
  免费   113篇
  国内免费   173篇
  4983篇
  2023年   25篇
  2022年   50篇
  2021年   39篇
  2020年   49篇
  2019年   78篇
  2018年   86篇
  2017年   60篇
  2016年   74篇
  2015年   82篇
  2014年   191篇
  2013年   352篇
  2012年   121篇
  2011年   208篇
  2010年   137篇
  2009年   231篇
  2008年   232篇
  2007年   281篇
  2006年   208篇
  2005年   199篇
  2004年   194篇
  2003年   174篇
  2002年   136篇
  2001年   87篇
  2000年   89篇
  1999年   87篇
  1998年   101篇
  1997年   101篇
  1996年   79篇
  1995年   125篇
  1994年   100篇
  1993年   93篇
  1992年   85篇
  1991年   71篇
  1990年   65篇
  1989年   62篇
  1988年   73篇
  1987年   59篇
  1986年   73篇
  1985年   78篇
  1984年   85篇
  1983年   32篇
  1982年   42篇
  1981年   41篇
  1980年   52篇
  1979年   24篇
  1978年   19篇
  1977年   16篇
  1976年   14篇
  1975年   11篇
  1973年   7篇
排序方式: 共有4983条查询结果,搜索用时 0 毫秒
61.
Dihydrofolate reductase is an essential bacterial enzyme necessary for the maintenance of intracellular folate pools in a biochemically active reduced state. In this report, the Mycobacterium avium folA gene was identified by functional genetic complementation, sequenced, and expressed for the first time. It has an open reading frame of 543 bp with a G+C content of 73%. The translated polypeptide sequence shows 58% identity to the consensus sequence of the conserved regions from eight other bacterial dihydrofolate reductases. Recombinant M. avium dihydrofolate reductase was expressed actively in Escherichia coli, and SDS-PAGE analysis revealed a 20 kDa species, agreeable with that predicted from the polypeptide sequence.  相似文献   
62.
In Saccharomyces cerevisiae, there are two isoenzymes of fumarate reductase (FRDS1 and FRDS2), encoded by the FRDS and OSM1 genes, respectively. Simultaneous disruption of these two genes results in a growth defect of the yeast under anaerobic conditions, while disruption of the OSM1 gene causes slow growth. However, the metabolic role of these isoenzymes has been unclear until now. In the present study, we found that the anaerobic growth of the strain disrupted for both the FRDS and OSM1 genes was fully restored by adding the oxidized form of methylene blue or phenazine methosulfate, which non-enzymatically oxidize cellular NADH to NAD(+). When methylene blue was added at growth-limiting concentrations, growth was completely arrested after exhaustion of oxidized methylene blue. In the double-disrupted strain, the accumulation of succinate in the supernatant was markedly decreased during anaerobic growth in the presence of methylene blue. These results suggest that fumarate reductase isoenzymes are required for the reoxidation of intracellular NADH under anaerobic conditions, but not aerobic conditions.  相似文献   
63.
木质素单体合成的过程中涉及了许多酶的参与,而肉桂酰辅酶A还原酶(cinnamoyl-CoA reductase,CCR)是该过程中的一个关键酶。综述了CCR基因在植物体内的克隆、基因功能及在植物组织中的表达情况,并介绍了该基因在植物的抗病虫害和抗逆性研究、饲草和能源上的应用潜力,为进一步研究CCR基因生物学功能和利用奠定了基础。  相似文献   
64.
Malaria parasites (Plasmodium falciparum) provide an excellent system in which to study the genomic effects of strong selection in a recombining eukaryote because the rapid spread of resistance to multiple drugs during the last the past 50 years has been well documented, the full genome sequence and a microsatellite map are now available, and haplotype data can be easily generated. We examined microsatellite variation around the dihydrofolate reductase (dhfr) gene on chromosome 4 of P. falciparum. Point mutations in dhfr are known to be responsible for resistance to the antimalarial drug pyrimethamine, and resistance to this drug has spread rapidly in Southeast (SE) Asia after its introduction in 1970s. We genotyped 33 microsatellite markers distributed across chromosome 4 in 61 parasites from a location on the Thailand/Myanmar border. We observed minimal microsatellite length variation in a 12-kb (0.7-cM) region flanking the dhfr gene and diminished variation for approximately 100 kb (6 cM), indicative of a single origin of resistant alleles. Furthermore, we found the same or similar microsatellite haplotypes flanked resistant dhfr alleles sampled from 11 parasite populations in five SE Asian countries indicating recent invasion of a single lineage of resistant dhfr alleles in locations 2000 km apart. Three features of these data are of especially interest. (1). Pyrimethamine resistance is generally assumed to have evolved multiple times because the genetic basis is simple and resistance can be selected easily in the laboratory. Yet our data clearly indicate a single origin of resistant dhfr alleles sampled over a large region of SE Asia. (2). The wide valley ( approximately 6 cM) of reduced variation around dhfr provides "proof-of-principle" that genome-wide association may be an effective way to locate genes under strong recent selection. (3). The width of the selective valley is consistent with predictions based on independent measures of recombination, mutation, and selection intensity, suggesting that we have reasonable estimates of these parameters. We conclude that scanning the malaria parasite genome for evidence of recent selection may prove an extremely effective way to locate genes underlying recently evolved traits such as drug resistance, as well as providing an opportunity to study the dynamics of selective events that have occurred recently or are currently in progress.  相似文献   
65.
肉桂酰辅酶A还原酶(cinnamoyl-CoA reductase,CCR)是木质素合成代谢的关键酶。该研究以菊芋(Helianthus tuberosus L.)‘廊芋8号’为材料,克隆到1个菊芋的CCR基因,命名为HtCCR1(GenBank登录号为MN205540),其开放阅读框(ORF)长975bp,编码324个氨基酸,其中含有FR_SDR_e保守结构域。系统进化分析表明,HtCCR1与向日葵CCR蛋白(XP_021989763.1)共聚于一支,二者亲缘关系最近。实时定量PCR分析表明,HtCCR1基因在菊芋茎和叶中的表达量显著高于在根和块茎中;盐(150mmol·L-1 NaCl)胁迫处理6、12和24h后,处理组HtCCR1基因的表达量均显著高于对照组;干旱(20%PEG6000)胁迫6和12h后,处理组HtCCR1基因的表达较对照组均显著上调。成功构建pET-28a-HtCCR1原核表达载体,转化大肠杆菌BL21(DE3)并诱导出了符合预期大小的蛋白,表明HtCCR1重组蛋白已成功表达。该研究结果为进一步研究HtCCR1基因的功能及利用基因工程手段调节菊芋中木质素的生物合成奠定了基础。  相似文献   
66.
Trypanothione reductase (TR) occurs exclusively in trypanosomes and leishmania, which are the etiological agents of many diseases. TR plays a vital role in the antioxidant defenses of these parasites and inhibitors of TR have potential as antitrypanosomal agents. We describe the syntheses of several spermine and spermidine derivatives and the inhibiting effects of these compounds on T. cruzi TR. All of the inhibiting compounds displayed competitive inhibition of TR-mediated reduction of trypanothione disulfide. The three most effective compounds studied were N4,N8-bis(3-phenylpropyl)spermine (12), N4,N8-bis(2-naphthylmethyl)spermine (14), and N1,N8-bis(2-naphthylmethyl)spermidine (21), with Ki values of 3.5, 5.5 and 9.5 μM, respectively. Compounds 12, 14, and 21 were found to be potent trypanocides in vitro with IC50 values ranging from 0.19 to 0.83 μM against four T. brucei ssp. strains. However, these compounds did not prolong the lives of mice infected with trypanosomes. This work indicates that certain polyamine derivatives which target a unique pathway in Trypanosomatidae have potential as antitrypanosomal agents.  相似文献   
67.
Ribonucleotide reduction is the only known biological means for de novo production of deoxyribonucleotides, the building blocks of DNA. These are produced from ribonucleotides, the building blocks of RNA, and the direction of this reaction has been taken to support the idea that, in evolution, RNA preceded DNA as genetic material. However, an understanding of the evolutionary relationships among the three modern-day classes of ribonucleotide reductase and how the first reductase arose early in evolution is still far off. We propose that the diversification of this class of enzymes is inherently tied to microbial colonization of aerobic and anaerobic niches. The work is of broader interest, as it also sheds light on the process of adaptation to oxygenic environments consequent to the evolution of atmospheric oxygen.  相似文献   
68.
In the course of study on citric acid fermentation by Candida tropicalis KY6224, in which n-alkane mixture (C–12 to C–15) was used as the sole source of carbon, we found that a arabitollike substance was accumulated when the medium-pH was controlled at low level (3.0 to 4.0). This substance was isolated in crystalline forms and identified as d-arabitol.

d-Arabitol production was also observed with ethanol, acetic acid and glucose as the sole source of carbon. Important factors for efficient production of d-arabitol were keeping the medium-pH at low-level (3.0 to 4.0) and the concentration of NaCl or KCl at high level (1 to 5%). This strain produced 75 mg/ml of d-arabitol in 120 hr incubation under optimal culture conditions; this corresponds to 50 % of n-alkane consumed.  相似文献   
69.
The flower is the most significant and beautiful part of plants. Flowers are very useful organs in plant developmental phenomenon. During flower bud opening, various events takes place in a well defined sequence, representing all aspects of plant development, such as cell division, cellular differentiation, cell elongation or expansion and a wide spectrum of gene expression. The complexity of flower bud opening illustrates that various biological mechanisms are involved at different stages. Senescence represents the ultimate stage of floral development and results in wilting or abscission of whole flower or flower parts. Senescence is an active process and governed by a well defined cell death program. Once a flower bud opens, the programmed senescence of petal allows the removal of a metabolically active tissue. In leaves, this process can be reversed, but in floral tissue it cannot, indicating that a highly controlled genetic program for cell death is operating. The termination of a flower involves at least two, sometimes overlapping, mechanisms. In one, the perianth abscises before the majority of its cells initiate a cell death program. Abscission may occur before or during the mobilization of food reserves to other parts of the plant. Alternatively, the petals may be more persistent, so that cell deterioration and food remobilization occur while the petals are still part of the flower. The overall pattern of floral opening varies widely between plant genera, therefore, a number of senescence parameters have been used to group plants into somewhat arbitrary categories. Opening and senescence of rose flower is still an unsolved jigsaw in the world of floriculture industry and the mechanism behind the onset of the very early events in the sequence still remains to be elucidated. Hence, for advancing the knowledge on the pertinent aspect of bud opening and senescence the literature has been cited under this review.  相似文献   
70.

Background

α-Eleostearic acid and punicic acid, two typical conjugated linolenic acid (CLnA) isomers present in bitter gourd and snake gourd oil respectively, exhibit contrasting cis-trans configuration which made them biologically important.

Methods

Rats were divided into six groups. Group 1 was control and group 2 was treated control. Rats in the groups 3 and 4 were treated with mixture of α-eleostearic acid and punicic acid (1:1) (0.5% and 1.0% respectively) while rats in the groups 5 and 6 were treated with 0.5% of α-eleostearic acid and 0.5% of punicic acid respectively along with sodium arsenite by oral gavage once per day.

Results

Results showed that increase in nitric oxide synthase (NOS) activity, inflammatory markers expression, platelet aggregation, lipid peroxidation, protein oxidation, DNA damage and altered expression of liver X receptor-α (LXR-α) after arsenite treatment were restored with the supplementation of oils containing CLnA isomers. Altered activities of different antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and ferric reducing ability of plasma (FRAP) also restored after oil supplementation. Altered morphology and fluidity of erythrocyte membrane studied by atomic force and scanning electron microscopy, after stress induction were significantly improved due to amelioration in cholesterol/phospholipid ratio and fatty acid profile of membrane. Oils treatment also improved morphology of liver and fatty acid composition of hepatic lipid.

Conclusions

Overall two isomers showed synergistic antioxidant and anti-inflammatory effect against induced perturbations and membrane disintegrity.

General significance

Synergistic antioxidant and anti-inflammatory role of these CLnA isomers were established by this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号