首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9012篇
  免费   1744篇
  国内免费   1142篇
  2024年   85篇
  2023年   371篇
  2022年   378篇
  2021年   550篇
  2020年   506篇
  2019年   498篇
  2018年   413篇
  2017年   402篇
  2016年   383篇
  2015年   376篇
  2014年   465篇
  2013年   677篇
  2012年   386篇
  2011年   430篇
  2010年   370篇
  2009年   438篇
  2008年   458篇
  2007年   516篇
  2006年   425篇
  2005年   393篇
  2004年   323篇
  2003年   327篇
  2002年   275篇
  2001年   222篇
  2000年   189篇
  1999年   190篇
  1998年   159篇
  1997年   131篇
  1996年   152篇
  1995年   108篇
  1994年   117篇
  1993年   97篇
  1992年   104篇
  1991年   92篇
  1990年   67篇
  1989年   77篇
  1988年   63篇
  1987年   68篇
  1986年   51篇
  1985年   73篇
  1984年   81篇
  1983年   52篇
  1982年   71篇
  1981年   49篇
  1980年   50篇
  1979年   42篇
  1978年   38篇
  1977年   34篇
  1976年   19篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
71.
前言在我国海涂中被日潮淹没的中、低潮带,天然生长的高等植物种类比较贫乏,分布面积也较小,许多中低潮带海滩为光滩裸地。为了绿化海滩、保护海滩,提高海滩生态系统的初级生产力,我国在1963年和1978年分别从英国  相似文献   
72.
Lars-Owe D. Koskinen 《Peptides》1991,12(6):1273-1277
The cardiovascular effects of IV naloxone and a subsequent administration of TRH IV were studied in the rabbit. Naloxone caused a vasodilation in the myocardium and adrenal glands. Naloxone elicited an increment in cerebral blood flow in several regions which attenuated the cerebrovasodilating effect of TRH in a few regions. The blockade of endogenous opioids with naloxone did not modify the peripheral vasoconstricting effect of TRH or affect the vascular effects of TRH mediated by the peripheral sympathetic nerves. The results indicate that naloxone has a vasodilating effect in the myocardium and CNS in anesthetized rabbits. The major part of the cardiovascular effect of TRH is not dependent on mechanisms sensitive to naloxone.  相似文献   
73.
Summary Transepithelial electrogenic Na+ transport (INa) was investigated in the coprodeum of 20-days-old chicken embryos in Ussing chambers. Short circuit current (Isc) and transepithelial resistance (Rt) were 14.7±4.8 A · cm-2 (n=12) and 0.53±0.09 k · cm-2 (n=12), respectively. INa was calculated from changes in Isc by substitution of mucosal Na+ by (N-methyl-d-glucamine) (NMDG). Isc inversed during Na+ removal, and INa was found to be 27.8±4.7 A · cm-2 (n=12). Amiloride (100 mol · l-1) inhibited only about 60% of INa. Analysis of Isc fluctuations revealed a Lorentzian component in the power density spectrum with a corner frequency of about 57 Hz. This component was not correlated to INa, and its origin is still unclear. Removal of mucosal Ca2+ increased INa about 2.5-fold due to an increase of the amiloride-insensitive component of INa in additionally investigated adult tissues. The results clearly show that this is due to a non-selective cation channel with an apparent order of selectivity Cs+>Na+=K+>Rb+>Li+. The Ca2+ concentration required to block 50% of the Isc was about 18 mol · l-1. The I sc Ca could also be supressed by other divalent cations such as Mg2+ and Ba2+. Additionally, an INa-linked Lorentzian component occurred which dominated the control spectrum with a significantly higher corner frequency (about 88 Hz). The results indicate that Na+ absorption in the coprodeum of the chicken embryo is more complex than in adult hens. However, the Ca2+ sensitivity of INa is similar to comparable effects described for other epithelia. This possibly reflects the existence of two types of amiloride-insensitive apical cation channels as pathways for Na+ absorption, which may be involved to differing degrees in ontogenetic developments of nonselective channels to Na+-specific ion channels.Abbreviations DPL direct-linear-plot method - slope of the back-ground noise component - EGTA ethylene glycol-bi(2-amino-ethylether)-N,N,N,N-tetraacetic acid - f frequency - f c corner frequency of the Lorentzian noise component - G t transepithelial conductance - HEPES N-hydroxyethylpiperazine-N-ethanesulfonic acid - I sc short-circuit current - I Na transepithelial sodium current - I sc Ca Ca2+-sensitive short-circuit current - K m Ca Michaelis-Menten constant for Ca2+ - K B power density of the background noise component at f=1Hz - m mucosal - NMDG N-methyl-D-glucamine - R t transepithelial resistance - s serosal - SEM standard error of mean - S(f) power density of the Lorentzian noise component - S o plateau value of the Lorentzian noise component  相似文献   
74.
Summary The plasma levels of four osmoregulatory hormones and their target ion-transport systems in the lower intestines of the domestic fowl were determined in order to elucidate their interrelationship and their setpoints in relation to NaCl intake. White Plymouth Rock hens were adapted to six intake levels of NaCl (0.20±0.02–24.7±1.9 mmoles Na+·kg bw–1·day–1) for 6 weeks. The Na+ absorption and the Cl secretion of colon and coprodeum were characterized in vitro by the effects of hexoses, amino acids, amiloride, and theophylline on the short-circuit current (SCC) and electrical potential difference (PD). The NaCl-conserving system of the adult chicken is set at low intake levels of NaCl as the 80% range (quantitized by non-linear, logistic regression analyses) of the change in the plasma [ALDO], the amiloride-inhibitable Na+ absorption of coprodeum and colon ( SCC), occurred from 0.18 to 2.3, from 0.9 to 4.3, and from 1.2 to 7.3 mmoles Na+·kg bw–1·day–1, respectively. These results demonstrate that the amiloride-inhibitable Na+ absorption of coprodcum is more closely linked to plasma [ALDO] than that of colon. The aminoacid-Na+ coabsorption of colon increased over exactly the same range of Na+ intake as the colonic amiloride-inhibitable Na+ absorption decreased, whereas the hexose-Na+ coabsorption increased at higher levels of Na+ intake, from 2 to 11 mmoles Na+·kg bw–1·day–1. Both these Na+ absorption types had reached their maximums at 24.7 mmoles Na+·kg bw–1·day–1, whereas the plasma [AVT] and plasma [PRL], although significantly increased, apparently had not; their 80% range of change occurred from 9.9 to 99 mmoles Na+·kg bw–1·day–1, and the main changes in plasma osmolity were predicted to occur from 5.4 to 107 mmoles Na+·kg bw–1·day–1. These results suggest that these colonic and hormonal variables conserve osmotically-free water and operate at high NaCl intake. The theophylline-induced colonic Cl secretion did not change with NaCl intake, whereas the stimulation of SCC in coprodeum decreased with increasing NaCl intake: The main change occurred between 0 and 3.2 mmoles Na+·kg bw–1·day–1. Thus, all ion-transport capacity disappears in coprodeum with increased dietary NaCl intake, whereas colon maintains its ion-transport capacity (although the nature of the Na+ transport changes). It is suggested that hormones defending the extracellular volume and composition are regulated close to zero input and output of both NaCl and water, regardless of whether they are NaCl conserving or free-water conserving. Therefore, changes in their stable plasma concentrations occur at the extremes of tolerable range of NaCl intake.Abbreviation AA aminoacids - ALDO aldosterone - AMI amiloride - AVT arginine vasotocin - bw body weight - CS corticosterone - HEX hexoses - INDO indomethacin - PD potential difference - PRL prolactin - R resistance - SCC short-circuit current - SD standard deviation - SEM standard error of mean - THEO theophylline  相似文献   
75.
The present study was designed to induce massive accumulation of calcium in the myocardium and to evaluate the effect of calcium overload on myocardial contractile function and biochemical activity of cardiac subcellular membranes. Rats were treated with an oral administration of 500,000 units/kg of vitamin D3 for 3 consecutive days, and their hearts were sampled on the 5th day for biochemical analysis. On the 4th and 5th days, heart rate, mean aortic pressure, left ventricular systolic pressure and left ventricular dP/dt were significantly lowered in vitamin D3-treated rats, demonstrating the existence of appreciable myocardial contractile dysfunction. Marked increases in the myocardial calcium (67-fold increase) and mitochondrial calcium contents (24-fold increase) were observed by hypervitaminosis D3. Mitochondrial oxidative phosphorylation and ATPase activity were significantly reduced by this treatment. A decline in sarcolemmal Na+, K+-ATPase activity was also observed, while relatively minor or insignificant changes in calcium uptake and ATPase activities of sarcoplasmic reticulum were detectable. Electron microscopic examination revealed calcium deposits in the mitochondria after vitamin D3 treatment. The results suggest that hypervitaminosis D3 produces massive accumulation of calcium in the myocardium, particularly in the cardiac mitochondrial membrane, which may induce an impairment in the mitochondrial function and eventually may lead to a failure in the cardiac contractile function.  相似文献   
76.
Summary Response characteristics of 130 single neurons in the superior olivary nucleus of the northern leopard frog (Rana pipiens pipiens) were examined to determine their selectivity to various behaviorally relevant temporal parameters [rise-fall time, duration, and amplitude modulation (AM) rate of acoustic signals. Response functions were constructed with respect to each of these variables. Neurons with different temporal firing patterns such as tonic, phasic or phasic-burst firing patterns, participated in time domain analysis in specific manners. Phasic neurons manifested preferences for signals with short rise-fall times, thus possessing low-pass response functions with respect to this stimulus parameter; conversely, tonic and phasic-burst units were non-selective and possessed all-pass response functions. A distinction between temporal firing patterns was also observed for duration coding. Whereas phasic units showed no change in the mean spike count with a change in stimulus duration (i.e., all-pass duration response functions), tonic and phasic-burst units gave higher mean spike counts with an increase in stimulus duration (i.e., primary-like high-pass response functions). Phasic units manifested greater response selectivity for AM rate than did tonic or phasic-burst units, and many phasic units were tuned to a narrow range of modulation rates (i.e., band-pass). The results suggest that SON neurons play an important role in the processing of complex acoustic patterns; they perform extensive computations on AM rate as well as other temporal parameters of complex sounds. Moreover, the response selectivities for rise-fall time, duration, and AM rate could often be shown to contribute to the differential responses to complex synthetic and natural sounds.Abbreviations SON superior olivary nucleus - DMN dorsal medullary nucleus - TS torus semicircularis - FTC frequency threshold curve - BF best excitatory frequency - PAM pulsatile amplitude modulation - SAM sinusoidal amplitude modulation - SQAM square-wave amplitude modulation - MTF modulation transfer function - PSTH peri-stimulus time histogram  相似文献   
77.
Residuals for relative risk regression   总被引:2,自引:0,他引:2  
  相似文献   
78.
棕色固氮菌在正常培养过程中所产生的含肽物质,有络合特征峰出现。含肽物质与钼(V)络合的EPR信号g值为1.94。与钼酸盐的络合稳定常数K为2.5×10~9。棕色固氮菌变种UW1(Av1~-,Av2~-),UW38(Av1~-,Av2~ )和UW91(Av1~ ,Av2~-)都能产生类似的含肽物质。培养基中钼的存在是含肽物质产生和分泌所必需的,含肽物质排出的量与培养基中钼的水准呈正相关。不能积累钼的变种UW71在高钼培养基中只能限量地分泌含肽物质。氨培养条件下仍能产生和分泌含肽物质。这种含肽物质与该菌粗提液中的某种成分(除固氮酶组分外)具同源性,它既能从菌体中分泌出来,又能进入菌体,在菌体和培养液之间往返运行,可能在该菌钼酸盐运输中起载体作用。  相似文献   
79.
80.
Hemolymph glucose, alkaline phosphatase, lactic dehydrogenase, and creatine phosphokinase in Biomphalaria glabrata infected with Angiostrongylus costaricensis were significantly higher on day 27 postinfection (PI) than in uninfected snails. Hemolymph total calcium from infected snails was less on days 6, 12, and 27 PI than that from controls. Total hemolymph protein was similar for controls and infected animals during the entire study. Throughout the study the mean number of amoebocytes/mm3 hemolymph from infected snails was significantly less than that for controls. Mean total wet weights of digestive gland and foot muscle from infected and uninfected snails was similar throughout the study. Mean μg glycogen/mg wet weight of digestive gland from infected snails was significantly greater on days 24, 27, and 28 PI than that from controls. Mean μg glycogen/mg wet weight of foot muscle from infected snails was significantly reduced between days 12 and 28 PI from that of uninfected snails. It is suggested that hemolymph glucose and digestive gland glycogen in infected snails are augmented by glycogen breakdown in the foot muscle of parasitized animals. Elevations in hemolymph enzymes are due to tissue destruction by larvae emerging from the foot muscle of infected snails. Parasite-induced derangements in shell metabolism underlie observed changes in hemolymph calcium in infected snails.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号