首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   6篇
  国内免费   4篇
  145篇
  2023年   1篇
  2022年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   21篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   9篇
  2005年   10篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   9篇
  2000年   5篇
  1999年   8篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1989年   3篇
  1987年   1篇
  1984年   1篇
排序方式: 共有145条查询结果,搜索用时 0 毫秒
71.
Biodegradation of petroleum hydrocarbon contamination is a common method forremediating soils and groundwater. Due to complexities with field-scale studies,biodegradation rates are typically evaluated at the bench-scale in laboratory studies.However, important field conditions can be difficult to mimic in the laboratory. Thisstudy investigates three scaling factors that can impact laboratory biodegradation ratesand that are frequently unaccounted for in typical laboratory experimental procedures.These factors are soil heterogeneity, morphology of petroleum hydrocarbon non-aqueous phase liquids (NAPLs) and soil moisture distribution. The effects of these factors on the biodegradation rate of diesel NAPL is tested under a variety of experimental procedures from well-mixed batch studies to four-foot static soil columns. The results indicate that a high degree of variability results from even small-scale heterogeneities. In addition, it appears that as the experimental scale increases, the measured biodegradation rates slow. The results indicate that diesel biodegradation rates derived from small-scale experiments are not necessarily representative of field-scale biodegradation rates.  相似文献   
72.
73.
文化遗产的生物退化与生物降解问题普遍存在。从方法学的角度回顾了针对不同类型文化遗产微生物病害与防治研究中常用的方法和技术,总结了国内外当前所取得的主要研究进展,提出了该领域研究中未来面临的问题和挑战,并展望了应对策略和今后发展趋势。文化遗产微生物研究方法经历了传统培养、显微镜分析、分子生物学技术、酶活性和代谢产物分析以及快速发展的多组学及生物信息学分析等多个阶段,在微生物多样性、群落特征、生理生态学及其退化机理方面的认识已逐渐深入,以文化遗产保护为目标的病害微生物防治技术不断发展。近年来通过新一代测序和宏基因组学技术获得了文化遗产微生物的诸多重要信息,但其作用机理和影响因素的研究还不够。本综述突出了结合传统与现代方法技术开展研究的重要性,旨在为文化遗产微生物学领域研究提供参考和借鉴。  相似文献   
74.
Claudia Sorlini 《Aerobiologia》1993,9(2-3):109-115
Summary In this review, sources of microbial contamination of air, factors affecting airborne spores survival, conditions that determine their composition and sampling methods are considered. The relation between airborne microorganisms and microorganisms colonizing surfaces of art works is also analyzed. Finally some advanced methods to detect and identify microorganisms responsible for alteration are suggested.  相似文献   
75.
Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60 day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products.  相似文献   
76.
77.
The interplay between nitrogen fertilization (N), yield, nitrous oxide emissions (N2O), and diesel fuel utilization associated with harvest and transport logistics of biomass crops remains poorly understood. In this research, we show that intensification (in terms of N) of bioenergy cropping to maximize yield supports not only minimized land use but also maximized logistics efficiency in terms of diesel use. This paradigm was examined within the scope of the billion‐ton biofuels vision and the Energy Independence and Security Act of 2007 using potential yields on marginal and prime agricultural land. Sixteen scenarios were investigated that considered the primary factors with agriculture bioenergy; biomass yield (11.2 and 22.4 Mg ha?1 yr?1), two nitrogen fertilizer application rates (50 and 100 kg N ha?1 yr?1), two Greenhouse Gas Emissions (GHGE) factors for synthetic nitrogen to nitrous oxide (1.5 and 5%), and three harvest/transportation efficiencies (50, 65, and 80%). These scenarios resulted in energy consumption between 747 and 1351 MJ Mg?1 and GHGE between 72 and 311 kg CO2 eq Mg?1. GHGE emissions are strongly related to the emission of nitrous oxide from soils due to nitrogen fertilization and could represent over 80% of the GHGE relative to biomass harvest logistics. These data imply that synthetic N supplementation to maximize yield could reduce the burden due to diesel fuel for harvest, but would rapidly become the most significant contributor to GHGE. Minimizing the impact of N fertilization will be critical for reducing the GHGE associated with biomass production.  相似文献   
78.
The basilica of San Lorenzo in Lucina in Rome was built in the fifth century on the foundations of a Roman insula used for dwellings and commercial activities, where the first Christian communities had held their meetings. This archaeological area is still rather isolated since it can only be visited by groups for one/two hours once a month. Such a situation is ideal for studying both the quantity of microorganisms in the air under undisturbed conditions and/or conveyed by visitors. The biodeterioration of subterranean remains is determined by the development of bacteria, cyanobacteria, actinomycetes, algae and fungi. On the walls of this underground archaeological area the main form of alteration is the efflorescence. In order to compare the stone and airborne microflora, the microorganisms living on stone and the airborne ones have been detected. Air samples were taken both during the visits and under non-turbulent conditions utilizing three sampling methods: gravitational, intake by multi-stage impact and intake by single-stage impact. The results have made it possible to determine the microbial content of the air, as well as the sampling schedule required for rarely visited underground environments. Furthermore, a comparison of the three methods used showed that the adoption of one or the other sampling method gave different complementary information on airborne microflora. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
79.
A diesel-degrading bacterium (strain IU5) isolated from oil-contaminated soil was characterized in this study. Fatty acid and 16s rDNA sequence analysis identified IU5 as a strain of Pseudomonas aeruginosa, and growth curve experiments identified the bacterium’s optimum conditions as pH 7 and 30 °C. P. aeruginosa IU5 degraded up to 60 of applied diesel (8500 mg/kg) over 13 days in a soil-slurry phase. In addition, this strain was able to grow on many other petroleum hydrocarbons as sole carbon sources, including crude oil, gasoline, benzene, toluene, xylene, and even PAHs such as naphthalene, phenanthrene and pyrene. Therefore, P. aeruginosa IU5 may be useful for bioremediation of soils and groundwater contaminated with a variety of hydrocarbons.  相似文献   
80.
Aims: To investigate roles of quorum‐sensing (QS) system in Acinetobacter sp. strain DR1 and rifampicin‐resistant variant (hereinafter DR1R). Methods and Results: The DR1 strain generated three putative acyl homoserine lactones (AHLs), while the DR1R produced only one signal and QS signal production was abrogated in the aqsI (LuxI homolog) mutant. The hexadecane‐degradation and biofilm‐formation capabilities of DR1, DR1R, and aqsI mutants were compared, along with their proteomic data. Proteomics analysis revealed that the AHL lactonase responsible for degrading QS signal was highly upregulated in both DR1R and aqsI mutant, also showed that several proteins, including ppGpp synthase, histidine kinase sensors, might be under the control of QS signalling. Interestingly, biofilm‐formation and hexadecane‐biodegradation abilities were reduced more profoundly in the aqsI mutant. These altered phenotypes of the aqsI mutant were restored via the addition of free wild‐type cell supernatant and exogenous C12‐AHL. Conclusions: The QS system in strain DR1 contributes to hexadecane degradation and biofilm formation. Significance and Impact of the Study: This is the first report to demonstrate that a specific QS signal appears to be a critical factor for hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号