首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22458篇
  免费   1797篇
  国内免费   1714篇
  25969篇
  2024年   120篇
  2023年   544篇
  2022年   650篇
  2021年   898篇
  2020年   936篇
  2019年   1099篇
  2018年   940篇
  2017年   858篇
  2016年   864篇
  2015年   1109篇
  2014年   1345篇
  2013年   2074篇
  2012年   930篇
  2011年   1074篇
  2010年   749篇
  2009年   1221篇
  2008年   1259篇
  2007年   1219篇
  2006年   1123篇
  2005年   897篇
  2004年   841篇
  2003年   702篇
  2002年   569篇
  2001年   474篇
  2000年   406篇
  1999年   369篇
  1998年   348篇
  1997年   354篇
  1996年   269篇
  1995年   222篇
  1994年   200篇
  1993年   196篇
  1992年   164篇
  1991年   145篇
  1990年   122篇
  1989年   102篇
  1988年   92篇
  1987年   78篇
  1986年   67篇
  1985年   75篇
  1984年   51篇
  1983年   33篇
  1982年   58篇
  1981年   41篇
  1980年   30篇
  1979年   19篇
  1978年   11篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Thiamine deficiency (TD) causes mild impairment of oxidative metabolism and region‐selective neuronal loss in the brain, which may be mediated by neuronal oxidative stress, endoplasmic reticulum (ER) stress, and neuroinflammation. TD‐induced brain damage is used to model neurodegenerative disorders, and the mechanism for the neuronal death is still unclear. We hypothesized that autophagy might be activated in the TD brain and play a protective role in TD‐induced neuronal death. Our results demonstrated that TD induced the accumulation of autophagosomes in thalamic neurons measured by transmission electron microscopy, and the up‐regulation of autophagic markers LC3‐II, Atg5, and Beclin1 as measured with western blotting. TD also increased the expression of autophagic markers and induced LC3 puncta in SH‐SY5Y neuroblastoma cells. TD‐induced expression of autophagic markers was reversed once thiamine was re‐administered. Both inhibition of autophagy by wortmannin and Beclin1 siRNA potentiated TD‐induced death of SH‐SY5Y cells. In contrast, activation of autophagy by rapamycin alleviated cell death induced by TD. Intraperitoneal injection of rapamycin stimulated neuronal autophagy and attenuated TD‐induced neuronal death and microglia activation in the submedial thalamus nucleus (SmTN). TD inhibited the phosphorylation of p70S6 kinase, suggesting mTOR/p70S6 kinase pathway was involved in the TD‐induced autophagy. These results suggest that autophagy is neuroprotective in response to TD‐induced neuronal death in the central nervous system. This opens a potential therapeutic avenue for neurodegenerative diseases caused by mild impairment of oxidative metabolism.

  相似文献   

992.
Energy failure and oxidative stress have been implicated in the pathogenesis of ischemia. Here, we report a potential link between cytosolic phospholipase A2 (cPLA2) activation and energy failure/oxidative stress‐induced astrocyte damage involving reactive oxygen species (ROS), protein kinase C‐α (PKC‐α), Src, Raf, and extracellular signal‐regulated kinase (ERK) signaling and concurrent elevation of endogenous chelatable zinc. Energy failure and oxidative stress were produced by treating astrocytes with glycolytic inhibitor iodoacetate and glutathione chelator diethylmaleate, respectively. Diethylmaleate and iodoacetate in combination caused augmented damage to astrocytes in a time‐ and concentration‐dependent manner. The cell death caused by diethylmaleate/iodoacetate was accompanied by increased ROS generation, PKC‐α membrane translocation, Src, Raf, ERK, and cPLA2 phosphorylation. Pharmacological studies revealed that these activations all contributed to diethylmaleate/iodoacetate‐induced astrocyte death. Intriguingly, the mobilization of endogenous chelatable zinc was observed in diethylmaleate/iodoacetate‐treated astrocytes. Zinc appears to act as a downstream mediator in response to diethylmaleate/iodoacetate treatment because of the attenuating effects of its chelator N,N,N′,N′‐tetrakis(2‐pyridylmethyl)ethylenediamine. These observations indicate that ROS/PKC‐α, Src/Raf/ERK signaling and cPLA2 are active participants in diethylmaleate/iodoacetate‐induced astrocyte death and contribute to a vicious cycle between the depletion of ATP/glutathione and the mobilization of chelatable zinc as critical upstream effectors in initiating cytotoxic cascades.

  相似文献   

993.
994.
Oxidative stress, induced by various neurodegenerative diseases, initiates a cascade of events leading to apoptosis, and thus plays a critical role in neuronal injury. In this study, we have investigated the potential neuroprotective effect of the octadecaneuropeptide (ODN) on 6‐hydroxydopamine (6‐OHDA)‐induced oxidative stress and apoptosis in cerebellar granule neurons (CGN). ODN, which is produced by astrocytes, is an endogenous ligand for both central‐type benzodiazepine receptors (CBR) and a metabotropic receptor. Incubation of neurons with subnanomolar concentrations of ODN (10?18 to 10?12 M) inhibited 6‐OHDA‐evoked cell death in a concentration‐dependent manner. The effect of ODN on neuronal survival was abrogated by the metabotropic receptor antagonist, cyclo1–8[DLeu5]OP, but not by a CBR antagonist. ODN stimulated polyphosphoinositide turnover and ERK phosphorylation in CGN. The protective effect of ODN against 6‐OHDA toxicity involved the phospholipase C/ERK MAPK transduction cascade. 6‐OHDA treatment induced an accumulation of reactive oxygen species, an increase of the expression of the pro‐apoptotic gene Bax, a drop of the mitochondrial membrane potential and a stimulation of caspase‐3 activity. Exposure of 6‐OHDA‐treated cells to ODN blocked all the deleterious effects of the toxin. Taken together, these data demonstrate for the first time that ODN is a neuroprotective agent that prevents 6‐OHDA‐induced oxidative stress and apoptotic cell death.  相似文献   
995.
A major hallmark of mutant superoxide dismutase (SOD1)‐linked familial amyotrophic lateral sclerosis is SOD1‐immunopositive inclusions found within motor neurons. The mechanism by which SOD1 becomes aggregated, however, remains unclear. In this study, we aimed to investigate the role of nitrosative stress and S‐nitrosylation of protein disulfide isomerase (PDI) in the formation of SOD1 aggregates. Our data show that with disease progression inducible nitric oxide synthase (iNOS) was up‐regulated, which generated high levels of nitric oxide (NO) and subsequently induced S‐nitrosylation of PDI in the spinal cord of mutant SOD1 transgenic mice. This was further confirmed by in vitro observation that treating SH‐SY5Y cells with NO donor S‐nitrosocysteine triggered a dose‐dependent formation of S‐nitrosylated PDI. When mutant SOD1 was over‐expressed in SH‐SY5Y cells, the iNOS expression was up‐regulated, and NO generation was consequently increased. Furthermore, both S‐nitrosylation of PDI and the formation of mutant SOD1 aggregates were detected in the cells expressing mutant SOD1G93A. Blocking NO generation with the NOS inhibitor N‐nitro‐l ‐arginine attenuated the S‐nitrosylation of PDI and inhibited the formation of mutant SOD1 aggregates. We conclude that NO‐mediated S‐nitrosylation of PDI is a contributing factor to the accumulation of mutant SOD1 aggregates in amyotrophic lateral sclerosis.  相似文献   
996.
We investigated the production of hydrogen peroxide (HOOH) in illuminated seawater media containing a variety of zwitterionic buffers. Production rates varied extensively among buffers, with 4‐(2‐hydroxyethyl)1‐piperazineethanesulfonic acid (HEPES) highest and N‐Tris(hydroxymethyl)methyl‐3‐aminopropanesulfonic acid (TAPS) among the lowest. The rate of HOOH accumulation was remarkably consistent over many days, and increased linearly with buffer concentration, natural seawater concentration, and light level. Concentrations of HEPES commonly used in culture media (1–10 mM) generated enough HOOH to kill the axenic Prochlorococcus strain VOL1 during growth in enriched seawater media at lower, environmentally realistic cell concentrations and/or under high light exposure. We also demonstrated that HEPES can be used experimentally to study the biological effects of chronic exposure to sublethal levels of HOOH such as may be experienced by light‐exposed microorganisms.  相似文献   
997.
998.
Poly(ADP-ribosyl)ation (PARylation) is a reversible protein modification carried out by the concerted actions of poly(ADP-ribose) polymerase (PARP) enzymes and poly(ADP-ribose) (PAR) decomposing enzymes such as PAR glycohydrolase (PARG) and ADP-ribosyl hydrolase 3 (ARH3). Reversible PARylation is a pleiotropic regulator of various cellular functions but uncontrolled PARP activation may also lead to cell death. The cellular demise pathway mediated by PARylation in oxidatively stressed cells has been described almost thirty years ago. However, the underlying molecular mechanisms have only begun to emerge relatively recently. PARylation has been implicated in necroptosis, autophagic cell death but its role in extrinsic and intrinsic apoptosis appears to be less predominant and depends largely on the cellular model used. Currently, three major pathways have been made responsible for PARP-mediated necroptotic cell death: (1) compromised cellular energetics mainly due to depletion of NAD, the substrate of PARPs; (2) PAR mediated translocation of apoptosis inducing factor (AIF) from mitochondria to nucleus (parthanatos) and (3) a mostly elusive crosstalk between PARylation and cell death/survival kinases and phosphatases. Here we review how these PARP-mediated necroptotic pathways are intertwined, how PARylation may contribute to extrinsic and intrinsic apoptosis and discuss recent developments on the role of PARylation in autophagy and autophagic cell death.  相似文献   
999.
1. The freshwater ostracod (Ostracoda), Eucypris virens, is commonly found in European temporary pools, where its long‐term persistence completely relies on the build‐up of resting egg banks. Extreme tolerance of dormant eggs and seeds is widely assumed, but freshwater ostracod eggs are relatively poorly studied. The study of ostracod resting eggs is of particular relevance as it may yield the key to understanding the distribution of the sexes in many species capable of both sexual and asexual reproduction. 2. We assessed the tolerance of dried resting eggs produced by females originating from three populations with males and three all‐female E. virens populations. Hatching time and success was compared between control eggs and eggs exposed to one of seven ecologically relevant stressors: digestive enzymes, high salinity, deep freezing, hydration, UV‐B radiation, hypoxia and insecticide treatment. 3. None of the stressors reduced significantly the viability of either sexual or asexual eggs. When compared with the reproductive mode–specific controls, exposure to UV‐B radiation had a mild impact on the survival of sexual and asexual eggs (?16.8 and ?22.4%, respectively), but this was only significant for asexual eggs. These results point to an extreme tolerance of E. virens resting eggs and have important implications for the ecology and evolution of the species. 4. The timing of hatching was not affected by the stress treatment, except for UV‐B radiation. A marginally significant delay in hatching response was observed for UV‐B‐radiated eggs when compared to the overall mean, but this treatment effect was absent when compared with the reproductive mode–specific controls. 5. The populations with males produced eggs that hatched on average earlier (?1.5 days at 17 °C) and were more successful (+26%) than asexual eggs. Due to the limited number of populations and the population‐specific origin and age of the eggs, the possibility due to the differences in age and origin of the resting eggs, or to variations in local conditions, cannot be ruled out.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号