首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706篇
  免费   84篇
  国内免费   25篇
  815篇
  2024年   4篇
  2023年   29篇
  2022年   46篇
  2021年   47篇
  2020年   65篇
  2019年   118篇
  2018年   45篇
  2017年   24篇
  2016年   27篇
  2015年   23篇
  2014年   43篇
  2013年   55篇
  2012年   29篇
  2011年   23篇
  2010年   30篇
  2009年   16篇
  2008年   22篇
  2007年   23篇
  2006年   22篇
  2005年   14篇
  2004年   14篇
  2003年   18篇
  2002年   18篇
  2001年   8篇
  2000年   1篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
排序方式: 共有815条查询结果,搜索用时 15 毫秒
81.
We have demonstrated that the expressions of small molecular weight G-protein, H-Ras, and its effector protein, Raf-1, are increased in the retina in diabetes, and the specific inhibitors of Ras function inhibit glucose-induced apoptosis of retinal capillary cells. This study is to examine the contributory roles for H-Ras in glucose-induced apoptosis of retinal endothelial cells by genetic manipulation of functionally active H-Ras levels. Bovine retinal endothelial cells were transfected with the plasmids of either wild type (WT), constitutively active (V12) or dominant-negative (N17) H-Ras. Glucose-induced increase in apoptosis, nitric oxide (NO) levels and activation of NF-κB and caspase-3 were determined in these genetically manipulated cells. Exposure of bovine retinal endothelial cells to 20 mM glucose significantly increased H-Ras activation as determined by Raf-1 binding assay. Overexpression of V12 in the endothelial cells further increased their glucose-induced apoptosis by 40%, NO levels by about 50%, and activated NF-κB and caspase-3 by about 30–40% compared to the untransfected cells incubated in 20 mM glucose. In contrast, overexpression of the inactive mutant, N17, inhibited glucose-mediated increases in apoptotic cell death, NO levels and NF-κB and caspase-3 activation; the values were significantly different (p < 0.02) compared to those obtained from the untransfected cells incubated under similar conditions. Our findings demonstrate that H-Ras activation is important in the activation of the specific signaling events leading to the accelerated retinal capillary cell apoptosis in hyperglycemic conditions, suggesting the possible use of H-Ras inhibitors to inhibit the pathogenesis of diabetic retinopathy.  相似文献   
82.
Many nuclear and cytoplasmic proteins are O-glycosylated on serine or threonine residues with the monosaccharide beta-N-acetylglucosamine, which is then termed O-linked N-acetylglucosamine (O-GlcNAc). It has been shown that abnormal O-GlcNAc modification (O-GlcNAcylation) of proteins is one of the causes of insulin resistance and diabetic complications. In this study, in order to examine the relationship between O-GlcNAcylation of proteins and glucose-stimulated insulin secretion in noninsulin-dependent type (type 2) diabetes, we investigated the level of O-GlcNAcylation of proteins, especially that of PDX-1, and the expression of O-GlcNAc transferase in Goto-Kakizaki (GK) rats, which are an animal model of type-2 diabetes. By immunoblot and immunohistochemical analyses, the expression of O-GlcNAc transferase protein and O-GlcNAc-modified proteins in whole pancreas and islets of Langerhans of 15-week-old diabetic GK rats and nondiabetic Wistar rats was examined. The expression of O-GlcNAc transferase at the protein level and O-GlcNAc transferase activity were increased significantly in the diabetic pancreas and islets. The diabetic pancreas and islets also showed an increase in total cellular O-GlcNAc-modified proteins. O-GlcNAcylation of PDX-1 was also increased. In the diabetic GK rats, significant increases in the immunoreactivities of both O-GlcNAc and O-GlcNAc transferase were observed. PUGNAc, an inhibitor of O-GlcNAcase, induced an elevation of O-GlcNAc level and a decrease of glucose-stimulated insulin secretion in isolated islets. These results indicate that elevation of the O-GlcNAcylation of proteins leads to deterioration of insulin secretion in the pancreas of diabetic GK rats, further providing evidence for the role of O-GlcNAc in the insulin secretion.  相似文献   
83.
Introduction – The aerial parts of Zygophyllum album L. are used in folk medicine as an antidiabetic agent and as a drug active against several pathologies. In this work we present the chemical composition of Algerian essential oils obtained by microwave accelerated distillation (MAD) extraction, a solventless method assisted by microwave. Objective – Under the same analytical conditions and using GC‐FID and GC‐MS, the chemical composition of the essential oil of Zygophyllum album L. extracted by MAD was compared with that achieved using hydrodistillation (HD). Methodology – The extracted compounds were hydrosoluble, and they were removed from the aqueous solution by a liquid extraction with an organic solvent. Results – Employing MAD (100°C, 30 min), the essential oil contained mainly oxygenated monoterpenes with major constituents: carvone and α‐terpineol. However, most of the compounds present in the hydrodistilled volatile fraction were not terpene species, with β‐damascenone as a major constituent. Conclusion – The MAD method appears to be more efficient than HD: after 30 min extraction time, the obtained yields (i.e. 0.002%) were comparable to those provided by HD after 3 h extraction. MAD seems to be more convenient since the volatile fraction is richer in oxygenated monoterpenes, species that are recognised for their olfactory value and their contribution to the fragrance of the essential oil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
84.
Diabetes mellitus is associated with increased risk for cardiovascular disorders, which are major causes of mortality in this disease. Hyperhomocysteinemia, defined by high plasma homocysteine levels, is an independent risk factor for the development of cardiovascular diseases. Type 2 diabetic patients have higher circulating homocysteine levels than healthy subjects and these levels are even higher in plasma of obese than nonobese diabetic patients. Homocysteine metabolism that has been studied in 2 animal models of type 2 diabetes with obesity led to conflicting data. The aim of the present study was to analyze homocysteine metabolism in a spontaneous nonobese model of type 2 diabetes, the Goto-Kakizaki rats at various successive and well characterized stages of the disease: during early postnatal normoglycemia, at the onset of hyperglycemia (around weaning), and during chronic mild hyperglycemia with progressive insulin resistance. Compared to age-matched Wistar controls, Goto-Kakizaki rats showed lower plasma levels of homocysteine and a falling trend in its major byproduct antioxidant, glutathione, from the prediabetic stage onwards. Concomitantly, Goto-Kakizaki rats exhibited increased liver activity of cystathionine beta synthase, which catalyzes the condensation of homocysteine with serine in the first step of the transsulfuration pathway. These results emphasize a strong association between homocysteine metabolism and insulin via the first step of the hepatic transsulfuration pathway in Goto-Kakizaki rats.  相似文献   
85.
Oxidative stress with reactive oxygen species generation is a key weapon in the arsenal of the immune system for fighting invading pathogens and initiating tissue repair. If excessive or unresolved, however, immune-related oxidative stress can initiate further increasing levels of oxidative stress that cause organ damage and dysfunction. Targeting oxidative stress in various diseases therapeutically has proven more problematic than first anticipated given the complexities and perversity of both the underlying disease and the immune response. However, growing evidence suggests that the endocannabinoid system, which includes the CB1 and CB2 G-protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development. This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types 1 and 2 diabetes, atherosclerosis, Alzheimer disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain.  相似文献   
86.
目的分别以C57BL/6JSlac和C57BL/KsJ-db/+表型正常小鼠为对照组,比较自发性2型糖尿病KK-Ay/Ta和C57BL/KsJ-db/db小鼠的体生长曲线、糖代谢曲线、血清胰岛素水平、主要脏器重量、脏器系数等生物学特性的差异,并探讨其肾脏、肝脏和胰腺等组织病理学变化。方法在各自实验周期内,每2周测定实验组和对照组小鼠的体重、血糖以及血清胰岛素水平,实验结束后处死,脏器、脂肪称重,部分组织制作病理切片。结果 (1)KK小鼠体重远高于db/db小鼠,且同品系间雄性小鼠重于雌性小鼠(P〈0.05);(2)同品系间雄性小鼠的血糖值明显大于雌性小鼠(P〈0.05),db/db小鼠出现血糖异常症状比KK小鼠早,且血糖值大于KK小鼠(P〈0.05),而KK小鼠血糖异常持续时间则较db/db小鼠长;(3)KK小鼠的血清胰岛素水平明显高于db/db小鼠(P〈0.05),同品系雌雄小鼠间没有明显差异(P〉0.05);(4)雄性KK小鼠脂肪系数及部分脏器萎缩程度大于雌性,而db/db小鼠雌雄间则无明显差异(P〉0.05),同时db/db小鼠脾脏和胰腺的萎缩程度及脂肪系数大于KK小鼠(P〈0.05),而KK小鼠肝脏的萎缩程度则大于db/db小鼠;(5)糖尿病模型小鼠肾脏、肝脏以及胰腺组织均出现明显病变。结论 KK-Ay/Ta和C57BL/KsJ-db/db小鼠均是肥胖的,伴有高血糖、高度胰岛素抵抗,肝脏、肾脏病变和胰岛功能不足的适用性2型糖尿病动物模型,且db/db小鼠血糖出现异常比KK小鼠早、脂肪系数大,而KK小鼠血糖异常持续时间较db/db小鼠长,同时血清胰岛素水平远大于db/db小鼠。  相似文献   
87.
糖尿病肾病动物模型的研究进展   总被引:1,自引:0,他引:1  
糖尿病肾病是糖尿病的主要并发症之一,也是终末期肾衰的元凶,其发病机制至今尚未阐明。因此,建立理想的实验动物模型是研究糖尿病肾病发病机制、疾病防治、新药开发的关键环节。本文回顾并分析了有关该疾病模型的国内外文献,从造模方法、发病机制、病理改变、适用条件、模型的优缺点等方面进行比较分析,为选择合适的动物模型应用于糖尿病肾病的研究提供参考。  相似文献   
88.
本文研究了沙棘籽渣水提物(Aqueous extract of seabuckthorn seed residues,ASSR)对正常及糖尿病小鼠血糖、血脂代谢的影响。首先采用ASSR灌胃昆明种小鼠的急性毒性试验评价了ASSR的安全性;继而以250mg/kg和500 mg/kg剂量的ASSR连续灌胃正常小鼠3周;以250、500和800 mg/kg剂量的ASSR连续灌胃Al-loxan诱导的糖尿病小鼠3周,监测血糖,测定体重、血清胰岛素、总胆固醇和甘油三酯水平。结果显示:ASSR的LD50大于9.8 g/kg体重;连续给药3周,ASSR对正常小鼠的血糖和血脂代谢没有明显影响,但能明显降低糖尿病小鼠的血清葡萄糖和甘油三酯水平。上述结果表明:ASSR的LD50大于5 g/kg体重,按WHO急性毒性分级标准属于实际无毒级,其在实验性1型糖尿病小鼠模型上具有降血糖和降甘油三酯活性。  相似文献   
89.
To explore the relationship between polyol pathway and protein kinase C (PKC), we examined PKC activities and expressions of PKC isoforms separately in endoneurial and vessel-rich epineurial tissues in diabetic mice transgenic for human aldose reductase (Tg). Tg and littermate control mice (Lm) were made diabetic by streptozotocin at 8 weeks of age and treated orally with aldose reductase inhibitor (ARI) (fidarestat 3-5 mg/kg/day) or placebo for 12 weeks. At the end, compared with non-diabetic state, sorbitol contents were increased 6.4-fold in endoneurium and 5.1-fold in epineurium in diabetic Tg, whereas the increase was detected only in endoneurium in diabetic Lm. Endoneurial PKC activity was significantly reduced in diabetic Tg. By contrast, epineurial PKC activity was increased in both diabetic Lm and diabetic Tg and there was no significant difference between the two groups. These changes were all corrected by ARI treatment. Consistent with the changes of PKC activities, diabetic Tg showed decreased expression of PKC alpha in endoneurium, whereas there was an increased expression of PKC beta II in epineurium in both diabetic Tg and diabetic Lm. These findings suggest the presence of dichotomous metabolic pathway between neural and vascular tissues in the polyol-PKC-related pathogenesis of diabetic neuropathy.  相似文献   
90.
Podocyte injury induced by hyperglycemia is the main cause of kidney dysfunction in diabetic nephropathy. However, the underlying mechanism is unclear. Store-operated Ca2+ entry (SOCE) regulates a diversity of cellular processes in a variety of cell types. Calpain, a Ca2+-dependent cysteine protease, was recently shown to be involved in podocyte injury. In the present study, we sought to determine whether increased SOCE contributed to high glucose (HG)–induced podocyte injury through activation of the calpain pathway. In cultured human podocytes, whole-cell patch clamp indicated the presence of functional store-operated Ca2+ channels, which are composed of Orai1 proteins and mediate SOCE. Western blots showed that HG treatment increased the protein abundance of Orai1 in a dose-dependent manner. Consistently, calcium imaging experiments revealed that SOCE was significantly enhanced in podocytes following HG treatment. Furthermore, HG treatment caused overt podocyte F-actin disorganization as well as a significant decrease in nephrin protein abundance, both of which are indications of podocyte injury. These podocyte injury responses were significantly blunted by both pharmacological inhibition of Orai1 using the small molecule inhibitor BTP2 or by genetic deletion of Orai1 using CRISPR-Cas9 lentivirus. Moreover, activation of SOCE by thapsigargin, an inhibitor of Ca2+ pump on the endoplasmic/sarcoplasmic reticulum membrane, significantly increased the activity of calpain, which was inhibited by BTP2. Finally, the calpain-1/calpain-2 inhibitor calpeptin significantly blunted the nephrin protein reduction induced by HG treatment. Taken together, our results suggest that enhanced signaling via an Orai1/SOCE/Calpain axis contributes to HG-induced podocyte injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号