首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1306篇
  免费   112篇
  国内免费   50篇
  1468篇
  2023年   19篇
  2022年   20篇
  2021年   35篇
  2020年   34篇
  2019年   33篇
  2018年   43篇
  2017年   39篇
  2016年   34篇
  2015年   33篇
  2014年   49篇
  2013年   66篇
  2012年   39篇
  2011年   46篇
  2010年   47篇
  2009年   66篇
  2008年   57篇
  2007年   67篇
  2006年   93篇
  2005年   58篇
  2004年   70篇
  2003年   67篇
  2002年   39篇
  2001年   37篇
  2000年   40篇
  1999年   23篇
  1998年   23篇
  1997年   32篇
  1996年   17篇
  1995年   29篇
  1994年   25篇
  1993年   24篇
  1992年   19篇
  1991年   29篇
  1990年   13篇
  1989年   18篇
  1988年   12篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   5篇
  1982年   12篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
排序方式: 共有1468条查询结果,搜索用时 15 毫秒
91.
In the gills of rainbow trout and Atlantic salmon, the alpha1a- and alpha1b-isoforms of Na,K-ATPase are expressed reciprocally during salt acclimation. The alpha1a-isoform is important for Na(+) uptake in freshwater, but the molecular basis for the functional differences between the two isoforms is not known. Here, three amino acid substitutions are identified in transmembrane segment 5 (TM5), TM8 and TM9 of the alpha1a-isoform compared to the alpha1b-isoform, and the functional consequences are examined by mutagenesis and molecular modeling on the crystal structures of Ca-ATPase or porcine kidney Na,K-ATPase. In TM5 of the alpha1a-isoform, a lysine substitution, Asn783 --> Lys, inserts the epsilon-amino group in cation site 1 in the E(1) form to reduce the Na(+)/ATP ratio. In the E(2) form the epsilon-amino group approaches cation site 2 to force ejection of Na(+) to the blood phase and to interfere with binding of K(+). In TM8, a Asp933 --> Val substitution further reduces K(+) binding, while a Glu961 --> Ser substitution in TM9 can prevent interaction of FXYD peptides with TM9 and alter Na(+) or K(+) affinities. Together, the three substitutions in the alpha1a-isoform of Na,K-ATPase act to promote binding of Na(+) over K(+) from the cytoplasm, to reduce the Na(+)/ATP ratio and the work done in one Na,K pump cycle of active Na(+) transport against the steep gradient from freshwater (10-100 microM: Na(+)) to blood (160 mM: Na(+)) and to inhibit binding of K(+) to allow Na(+)/H(+) rather than Na(+)/K(+) exchange.  相似文献   
92.
Summary In the powdery mildew disease of barley,Erysiphe graminis f. sp.hordei forms an intimate relationship with compatible hosts, in which haustoria form in epidermal cells with no obvious detrimental effects on the host until late in the infection sequence. In incompatible interactions, by contrast, the deposition of papillae and localized host cell death have been correlated with the cessation of growth byE. g. hordei. With the advent of improved, low temperature methods of sample preparation, we felt that it was useful to reevaluate the structural details of interactions between barley andE. g. hordei by transmission electron microscopy. The haustoria that develop in susceptible barley lines appear highly metabolically active based on the occurrrence of abundant endoplasmic reticulum, Golgi-like cisternae, and vesicles. In comparison, haustoria found in the resistant barley line exhibited varying signs of degradation. A striking clearing of the matrix and loss of cristae were typical early changes in the haustorial mitochondria in incompatible interactions. The absence of distinct endoplasmic reticulum and Golgi-like cisternae, the formation of vacuoles, and the occurrence of a distended sheath were characteristic of intermediate stages of haustorial degeneration. At more advanced stages of degeneration, haustoria were dominated by large vacuoles containing membrane fragments. This process of degeneration was not observed in haustoria ofE. g. hordei developing in the susceptible barley line.Abbreviations b endoplasmic reticulum extension, blebbing - er endoplasmic reticulum - f fibrillar material - g Golgi-like structure - h haustorium - hb haustorial body - hcw haustorial cell wall - hcy haustorial cytoplasm - hf haustorial finger - hocw host cell wall - hocy host cytoplasm - 1 lipid-like droplet - m mitochondrion - mt microtubule - mve multivesicular body - n nucleus - p papilla - ph penetration site of an infection peg - pl plasma membrane - s sheath - sm extrahaustorial membrane - v vacuole - ve vesicle  相似文献   
93.
Electrospun nanofibres are an excellent cell culture substrate, enabling the fast and non‐disruptive harvest and transfer of adherent cells for microscopical and biochemical analyses. Metabolic activity and cellular structures are maintained during the only half a minute‐long harvest and transfer process. We show here that such samples can be optimally processed by means of cryofixation combined either with freeze‐substitution, sample rehydration and cryosection‐immunolabelling or with freeze‐fracture replica‐immunolabelling. Moreover, electrospun fibre substrates are equally suitable for complementary approaches, such as biochemistry, fluorescence microscopy and cytochemistry.  相似文献   
94.
The naturally-occurring stable isotopes deuterium and hydrogen are fractionated by a number of physical and biological processes. Deuterium has a tendency to precipitate out first from a moist air mass. Thus ground water will become isotopically lighter with an increase in latitude, altitude, or distance inland. Water taken up by the plant from the soil undergoes little change until evapotranspiration results in leaf water becoming isotopically heavier. Thus hydrogen isotopes in plants can reveal something of geography (groundwater) and climate. Hydrogen isotopes undergo little fractionation by passage through the food chain, although plant parasites tend to be enriched in D as compared to their hosts, possibly due to higher rates of transpiration in the parasitic plants. The splitting of water in photosynthesis results in the lighter isotope being incorporated into organic matter. An even larger isotopic fractionation results during lipid synthesis and other processes involving the pyruvate dehydrogenase complex. Differences in metabolic pathway between species can be detected by D/H ratios. Hydrogen isotopic differences can be detected between CAM, C4, and C3 species. Within C4 plants, the NADP-ME plants are isotopically distinguishable from NAD-ME and PEP-CK plants.  相似文献   
95.
Synthesis and biological evaluation of a series of novel indole derivatives as anticancer agents is described. A bisindolylmaleimide template has been derived as a versatile pharmacophore with which to pursue chemical diversification. Starting from maleimide, the introduction of an oxygen to the headgroup (hydroxymaleimide) was initially investigated and the bioactivity assessed by screening of kinase inhibitory activity, identifying substituent derived selectivity. Extension of the hydroxymaleimide template to incorporate substitution of the indole nitrogens was next completed and assessed again by kinase inhibition identifying unique selectivity patterns with respect to GSK-3 and CDK kinases. Subsequently, the anticancer activity of bisindolylmaleimides were assessed using the NCI-60 cell screen, disclosing the discovery of growth inhibitory profiles towards a number of cell lines, such as SNB-75 CNS cancer, A498 and UO-31 renal, MDA MB435 melanoma and a panel of leukemia cell lines. The potential for selective kinase inhibition by modulation of this template is evident and will inform future selective clinical candidates.  相似文献   
96.
Protein motions underlie conformational and entropic contributions to enzyme catalysis; however, relatively little is known about the ways in which this occurs. Studies of the mitogen-activated protein kinase ERK2 (extracellular-regulated protein kinase 2) by hydrogen-exchange mass spectrometry suggest that activation enhances backbone flexibility at the linker between N- and C-terminal domains while altering nucleotide binding mode. Here, we address the hypothesis that enhanced backbone flexibility within the hinge region facilitates kinase activation. We show that hinge mutations enhancing flexibility promote changes in the nucleotide binding mode consistent with domain movement, without requiring phosphorylation. They also lead to the activation of monophosphorylated ERK2, a form that is normally inactive. The hinge mutations bypass the need for pTyr but not pThr, suggesting that Tyr phosphorylation controls hinge motions. In agreement, monophosphorylation of pTyr enhances both hinge flexibility and nucleotide binding mode, measured by hydrogen-exchange mass spectrometry. Our findings demonstrate that regulated protein motions underlie kinase activation. Our working model is that constraints to domain movement in ERK2 are overcome by phosphorylation at pTyr, which increases hinge dynamics to promote the active conformation of the catalytic site.  相似文献   
97.
98.
99.
Spider dragline silk, one of the strongest polymers in nature, is composed of proteins termed major ampullate spidroin (MaSp) 1 and MaSp2. The N-terminal (NT) domain of MaSp1 produced by the nursery web spider Euprosthenops australis acts as a pH-sensitive relay, mediating spidroin assembly at around pH 6.3. Using amide hydrogen/deuterium exchange combined with mass spectrometry (MS), we detected pH-dependent changes in deuterium incorporation into the core of the NT domain, indicating global structural stabilization at low pH. The stabilizing effects were diminished or abolished at high ionic strength, or when the surface-exposed residues Asp40 and Glu84 had been exchanged with the corresponding amides. Nondenaturing electrospray ionization MS revealed the presence of dimers in the gas phase at pH values below—but not above—6.4, indicating a tight electrostatic association that is dependent on Asp40 and Glu84 at low pH. Results from analytical ultracentrifugation support these findings. Together, the data suggest a mechanism whereby lowering the pH to < 6.4 results in structural changes and alteration of charge-mediated interactions between subunits, thereby locking the spidroin NT dimer into a tight entity important for aggregation and silk formation.  相似文献   
100.
A recombinant monoclonal antibody produced by Chinese hamster ovary (CHO) cell fed‐batch culture was found to have amino acid sequence misincorporation upon analysis by intact mass and peptide mapping mass spectrometry. A detailed analysis revealed multiple sites for asparagine were being randomly substituted by serine, pointing to mistranslation as the likely source. Results from time‐course analysis of cell culture suggest that misincorporation was occurring midway through the fed‐batch process and was correlated to asparagine reduction to below detectable levels in the culture. Separate shake flask experiments were carried out that confirmed starvation of asparagine and not excess of serine in the medium as the root cause of the phenomenon. Reduction in serine concentration under asparagine starvation conditions helped reduce extent of misincorporation. Supplementation with glutamine also helped reduce extent of misincorporation. Maintenance of asparagine at low levels in 2 L bench‐scale culture via controlled supplementation of asparagine‐containing feed eliminated the occurrence of misincorporation. This strategy was implemented in a clinical manufacturing process and scaled up successfully to the 200 and 2,000 L bioreactor scales. Biotechnol. Bioeng. 2010;107: 116–123. © 2010 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号