首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7399篇
  免费   525篇
  国内免费   182篇
  8106篇
  2024年   29篇
  2023年   89篇
  2022年   129篇
  2021年   217篇
  2020年   215篇
  2019年   288篇
  2018年   240篇
  2017年   178篇
  2016年   203篇
  2015年   233篇
  2014年   398篇
  2013年   475篇
  2012年   263篇
  2011年   328篇
  2010年   264篇
  2009年   294篇
  2008年   333篇
  2007年   320篇
  2006年   328篇
  2005年   283篇
  2004年   277篇
  2003年   239篇
  2002年   232篇
  2001年   136篇
  2000年   139篇
  1999年   169篇
  1998年   142篇
  1997年   150篇
  1996年   115篇
  1995年   113篇
  1994年   110篇
  1993年   92篇
  1992年   104篇
  1991年   73篇
  1990年   65篇
  1989年   80篇
  1988年   63篇
  1987年   58篇
  1986年   61篇
  1985年   59篇
  1984年   83篇
  1983年   60篇
  1982年   66篇
  1981年   57篇
  1980年   63篇
  1979年   47篇
  1978年   37篇
  1977年   28篇
  1976年   22篇
  1972年   14篇
排序方式: 共有8106条查询结果,搜索用时 15 毫秒
71.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12),a key enzyme ofcarbon metabolism,was purified and characterized to homogeneity from skeletal muscle of Camelusdromedarius.The protein was purified approximately 26.8 folds by conventional ammonium sulphatefractionation followed by Blue Sepharose CL-6B chromatography,and its physical and kinetic propertieswere investigated.The native protein is a homotetramer with an apparent molecular weight of approximately146 kDa.Isoelectric focusing analysis showed the presence of only one GAPDH isoform with an isoelectricpoint of 7.2.The optimum pH of the purified enzyme was 7.8.Studies on the effect of temperature onenzyme activity revealed an optimal value of approximately 28-32 ℃ with activation energy of 4.9 kcal/mol.The apparent K_m values for NAD~ and DL-glyceraldehyde-3-phophate were estimated to be 0.025±0.040mM and 0.21±0.08 mM, respectively. The V_(max) of the purified protein was estimated to be 52.7±5.9 U/mg.These kinetic parameter values were different from those described previously, reflecting protein differencesbetween species.  相似文献   
72.
73.
74.
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single ∼33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 °C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 °C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.  相似文献   
75.
To study the physiological role of the creatine kinase/phosphocreatine (CK/PCr) system in cells and tissues with a high and fluctuating energy demand we have concentrated on the site-directed inactivation of the B- and M-CK genes encoding the cytosolic CK protein subunits. In our approach we used homologous recombination in mouse embryonic stem (ES) cells from strain 129/Sv. Using targeting constructs based on strain 129/Sv isogenic DNA we managed to ablate the essential exons of the B-CK and M-CK genes at reasonably high frequencies. ES clones with fully disrupted B-CK and two types of M-CK gene mutations, a null (M-CK) and leaky (M-CK1) mutation, were used to generate chimaeric mutant mice via injection in strain C57BL/6 derived blastocysts. Chimaeras with the B-CK null mutation have no overt abnormalities but failed to transmit the mutation to their offspring. For the M-CK and M-CK1 mutations successful transmission was achieved and heterozygous and homozygous mutant mice were bred. Animals deficient in MM-CK are phenotypically normal but lack muscular burst activity. Fluxes through the CK reaction in skeletal muscle are highly impaired and fast fibres show adaptation in cellular architecture and storage of glycogen. Mice homozygous for the leaky M-CK allele, which have 3-fold reduced MM-CK activity, show normal fast fibres but CK fluxes and burst activity are still not restored to wildtype levels.  相似文献   
76.
Summary Both the fast and slow muscle fibres of advanced teleost fish are multiply innervated. The fraction of slow-fibre volume occupied by mitochondria is 31.3%, 25.5% and 24.6%, respectively, for the myotomal muscles of brook trout (Salvelinus fontinalis), crucian carp (Carassius carassius), and plaice (Pleuronectes platessa), respectively. The corresponding figures for the fast muscles of these species are 9.3%, 4.6% and 2.0%, respectively. Cytochrome-oxidase and citrate-synthetase activities in the fast muscles of 9 species of teleost range from 0.20–0.93 moles substrate utilised, g wet weight muscle-1 min-1 (at 15° C) or around 4–17% of that of the corresponding slow fibres. Ultrastructural analyses reveal a marked heterogeneity within the fast-fibre population. For example, the fraction of fibres with <1% or >10% mitochondria is 0,4,42% and 36, 12 and 0%, respectively, for trout, carp and plaice. In general, small fibres (<500 m2) have the highest and large fibres (>1,500 m2) the lowest mitochondrial densities. The complexity of mitochondrial cristae is reduced in fast compared to slow fibres.Hexokinase activities range from 0.4–2.5 in slow and from 0.08–0.7 moles, g wet weight-1 min-1 in fast muscles, indicating a wide variation in their capacity for aerobic glucose utilisation. Phosphofructokinase activities are 1.2 to 3.6 times higher in fast than slow muscles indicating a greater glycolytic potential. Lactate dehydrogenase activities are not correlated with either the predicted anaerobic scopes for activity or the anoxic tolerances of the species studied. The results indicate a considerable variation in the aerobic capacities and principal fuels supporting activity among the fast muscles of different species. Brook trout and crucian carp are known to recruit fast fibres at low swimming speeds. For these species the aerobic potential of the fast muscle is probably sufficient to meet the energy requirements of slow swimming.  相似文献   
77.
MicroRNAs Involved in Skeletal Muscle Differentiation   总被引:1,自引:0,他引:1  
Wen Luo    Qinghua Nie  Xiquan Zhang 《遗传学报》2013,40(3):107-116
MicroRNAs (miRNAs) negatively regulate gene expression by promoting degradation of target mRNAs or inhibiting their translation. Previous studies have expanded our understanding that miRNAs play an important role in myogenesis and have a big impact on muscle mass, muscle fiber type and muscle-related diseases. The muscle-specific miRNAs, miR-206, miR-1 and miR-133, are among the most studied and best characterized miRNAs in skeletal muscle differentiation. They have a profound influence on multiple muscle differ-entiation processes, such as alternative splicing, DNA synthesis, and cell apoptosis. Many non-muscle-specific miRNAs are also required for the differentiation of muscle through interaction with myogenic factors. Studying the regulatory mechanisms of these miRNAs in muscle differentiation will extend our knowledge of miRNAs in muscle biology and will improve our understanding of the myogenesis regulation.  相似文献   
78.
The cranial and hyobranchial muscles of the Triassic temnospondyl Gerrothorax have been reconstructed based on direct evidence (spatial limitations, ossified muscle insertion sites on skull, mandible, and hyobranchium) and on phylogenetic reasoning (with extant basal actinopterygians and caudates as bracketing taxa). The skeletal and soft‐anatomical data allow the reconstruction of the feeding strike of this bottom‐dwelling, aquatic temnospondyl. The orientation of the muscle scars on the postglenoid area of the mandible indicates that the depressor mandibulae was indeed used for lowering the mandible and not to raise the skull as supposed previously and implies that the skull including the mandible must have been lifted off the ground during prey capture. It can thus be assumed that Gerrothorax raised the head toward the prey with the jaws still closed. Analogous to the bracketing taxa, subsequent mouth opening was caused by action of the strong epaxial muscles (further elevation of the head) and the depressor mandibulae and rectus cervicis (lowering of the mandible). During mouth opening, the action of the rectus cervicis muscle also rotated the hyobranchial apparatus ventrally and caudally, thus expanding the buccal cavity and causing the inflow of water with the prey through the mouth opening. The strongly developed depressor mandibulae and rectus cervicis, and the well ossified, large quadrate‐articular joint suggest that this action occurred rapidly and that powerful suction was generated. Also, the jaw adductors were well developed and enabled a rapid mouth closure. In contrast to extant caudate larvae and most extant actinopterygians (teleosts), no cranial kinesis was possible in the Gerrothorax skull, and therefore suction feeding was not as elaborate as in these extant forms. This reconstruction may guide future studies of feeding in extinct aquatic tetrapods with ossified hyobranchial apparatus. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
79.
80.
Muscle force estimation (MFE) has become more and more important in exploring principles of pathological movement, studying functions of artificial muscles, making surgery plan for artificial joint replacement, improving the biomechanical effects of treatments and so on. At present, existing software are complex for professionals, so we have developed a new software named as concise MFE (CMFE). CMFE which provides us a platform to analyse muscle force in various actions includes two MFE methods (static optimisation method and electromyographic-based method). Common features between these two methods have been found and used to improve CMFE. A case studying the major muscles of lower limb of a healthy subject walking at normal speed has been presented. The results are well explained from the effect of the motion produced by muscles during movement. The development of this software can improve the accuracy of the motion simulations and can provide a more extensive and deeper insight in to muscle study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号