首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1296篇
  免费   114篇
  国内免费   16篇
  1426篇
  2023年   16篇
  2022年   31篇
  2021年   41篇
  2020年   31篇
  2019年   41篇
  2018年   41篇
  2017年   35篇
  2016年   46篇
  2015年   59篇
  2014年   64篇
  2013年   79篇
  2012年   41篇
  2011年   63篇
  2010年   47篇
  2009年   60篇
  2008年   64篇
  2007年   71篇
  2006年   60篇
  2005年   36篇
  2004年   45篇
  2003年   65篇
  2002年   60篇
  2001年   59篇
  2000年   39篇
  1999年   24篇
  1998年   27篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   12篇
  1992年   16篇
  1991年   12篇
  1990年   8篇
  1989年   10篇
  1988年   19篇
  1987年   10篇
  1986年   10篇
  1985年   6篇
  1984年   9篇
  1983年   6篇
  1982年   11篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
排序方式: 共有1426条查询结果,搜索用时 0 毫秒
61.
The Eps15 homology (EH) module is a protein-protein interaction domain that establishes a network of connections involved in various aspects of endocytosis and sorting. The finding that EH-containing proteins bind to Hrb (a cellular cofactor of the Rev protein) and to the related protein Hrbl raised the possibility that the EH network might also influence the so-called Rev export pathway, which mediates nucleocytoplasmic transfer of proteins and RNAs. In this study, we demonstrate that Eps15 and Eps15R, two EH-containing proteins, synergize with Hrb and Hrbl to enhance the function of Rev in the export pathway. In addition, the EH-mediated association between Eps15 and Hrb is required for the synergistic effect. The interaction between Eps15 and Hrb occurs in the cytoplasm, thus pointing to an unexpected site of action of Hrb, and to a possible role of the Eps15-Hrb complex in regulating the stability of Rev.  相似文献   
62.
Electrophysiological and morphological methods were used to study connexin50 (Cx50) expressed in Xenopus laevis oocytes. Oocytes expressing Cx50 exhibited a new population of intramembrane particles (9.0 nm in diameter) in the plasma membrane. The particles represented hemichannels (connexin hexamers) because (a) their cross-sectional area could accommodate 24 +/- 3 helices, (b) when their density reached 300-400/microm2, they formed complete channels (dodecamers) in single oocytes, and assembled into plaques, and (c) their appearance in the plasma membrane was associated with a whole-cell current, which was activated at low external Ca2+ concentration ([Ca2+]o), and was blocked by octanol and by intracellular acidification. The Cx50 hemichannel density was directly proportional to the magnitude of the Cx50 Ca2+-sensitive current. Measurements of hemichannel density and the Ca2+-sensitive current in the same oocytes suggested that at physiological [Ca2+]o (1-2 mM), hemichannels rarely open. In the cytoplasm, hemichannels were present in approximately 0.1-microm diameter "coated" and in larger 0.2-0.5-microm diameter vesicles. The smaller coated vesicles contained endogenous plasma membrane proteins of the oocyte intermingled with 5-40 Cx50 hemichannels, and were observed to fuse with the plasma membrane. The larger vesicles, which contained Cx50 hemichannels, gap junction channels, and endogenous membrane proteins, originated from invaginations of the plasma membrane, as their lumen was labeled with the extracellular marker peroxidase. The insertion rate of hemichannels into the plasma membrane (80, 000/s), suggested that an average of 4,000 small coated vesicles were inserted every second. However, insertion of hemichannels occurred at a constant plasma membrane area, indicating that insertion by vesicle exocytosis (60-500 microm2 membranes/s) was balanced by plasma membrane endocytosis. These exocytotic and endocytotic rates suggest that the entire plasma membrane of the oocyte is replaced in approximately 24 h.  相似文献   
63.
The eggs of many animal species contain a large store of yolk platelets, lipid droplets and glycogen granules; these are consumed during early embryogenesis. However, the mechanisms by which degradation of these stored materials occurs during early embryogenesis are not clearly understood. The mechanisms underlying yolk degradation in amphibian (newt) embryos were investigated. Electron microscopy using an anion marker, cationic ferritin, revealed that yolk platelets were degraded after fusion with late endosomes containing primary lysosomes. Electron microscopy and the results of experiments using a number of reagents with selective effects on intracellular transport suggested that yolk degradation activity in early amphibian embryos may be regulated at the point of fusion between late endosomes and yolk platelets.  相似文献   
64.
A biotin-labeled derivative of the ganglioside GM1 (biotin-GM1) was used to study its transport along the endocytic pathway of cultured fibroblasts by immuno-electron microscopy. Using electron dense endocytic tracers we could demonstrate that late endosomes and lysosomes of these cells are long living organelles with a high content of internal membranes. Our studies show that during endocytosis the biotin-GM1 was transported to these intraendosomal and intralysosomal membranes. These observations support the hypothesis that glycosphingolipids (GSL) are preferentially degraded in intralysosomal vesicles.  相似文献   
65.
66.
It has been suggested that infectious entry of rubella virus (RV) is conducted by receptor mediated endocytosis. To explore the cellular entry mechanism of RV, inhibitory effects of drugs affecting various endocytic pathways on RV entry into VeroE6 cells were analyzed. Results showed that RV infectious entry into VeroE6 cells is mediated by clathrin-dependent endocytosis and not by caveolae-mediated endocytosis. Moreover, chemical inhibition of macropinocytosis such as treatments of amiloride, actin and microtubule-disrupting drug significantly reduced RV infection. Considering that macropinocytosis is inducible endocytosis by cellular stimulations, clathrin-mediated endocytosis is likely to be a major route of RV infectious entry.  相似文献   
67.
The adaptor proteins AP-2 and AP-1/GGAs are essential components of clathrin coats at the plasma membrane and trans-Golgi network, respectively. The adaptors recruit accessory proteins to clathrin-coated pits, which is dependent on the adaptor ear domains engaging short peptide motifs in the accessory proteins. Here, we perform an extensive mutational analysis of a novel WXXF-based motif that functions to mediate the binding of an array of accessory proteins to the alpha-adaptin ear domain of AP-2. Using nuclear magnetic resonance and mutational studies, we identified WXXF-based motifs as major ligands for a site on the alpha-ear previously shown to bind the DPW-bearing proteins epsin 1/2. We also defined the determinants that allow for specific binding of the alpha-ear motif to AP-2 as compared to those that allow a highly related WXXF-based motif to bind to the ear domains of AP-1/GGAs. Intriguingly, placement of acidic residues around the WXXF cores is critical for binding specificity. These studies provide a structural basis for the specific recruitment of accessory proteins to appropriate sites of clathrin-coated vesicle formation.  相似文献   
68.
The amount of cell-surface Epidermal Growth Factor Receptor (EGFR) available to secreted ligand (EGF) dictates a cell's ability to mediate cell proliferation, differentiation or migration. Multiple factors regulate EGFR cell-surface expression including the rates of protein synthesis and protein degradation, and the endocytic trafficking of both stimulated and unstimulated EGFR. Rab5 is a 25 kDa protein that is localized to the plasma membrane and the early endosome. Its exact molecular function, however, remains controversial. We have used stable and transient expression systems in HeLa cells to examine the consequence of continual, overexpression of wild-type and activated mutants of rab5 on EGFR localization and signaling. Continual expression of constitutively activated mutants of rab5 causes a ligand-independent redistribution of EGFRs into intracellular vesicles that can not be blocked with an antagonistic antibody. The net result is a decrease in the level of cell-surface EGFRs available for ligand stimulation. Thus, rab5 activation regulates EGFR signaling by facilitating the internalization of the unliganded EGFR.  相似文献   
69.
The uroepithelium: not just a passive barrier   总被引:9,自引:0,他引:9  
The uroepithelium lines the inner surface of the renal pelvis, the ureters, and the urinary bladder, where it forms a tight barrier that allows for retention of urine, while preventing the unregulated movement of ions, solutes, and toxic metabolites across the epithelial barrier. In the case of the bladder, the permeability barrier must be maintained even as the organ undergoes cyclical changes in pressure as it fills and empties. Beyond furthering our understanding of barrier function, new analysis of the uroepithelium is providing information about how detergent-insoluble membrane/protein domains called plaques are formed at the apical plasma membrane of the surface umbrella cells, how mechanical stimuli such as pressure alter exocytic and endocytic traffic in epithelial cells such as umbrella cells, and how changes in pressure are communicated to the underlying nervous system.  相似文献   
70.
The purpose of this study was to clarify the mechanism of the blood-brain barrier (BBB) transport of H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA), which is a novel dermorphin analog with high affinity for the micro 1-opioid receptor. The in vivo BBB permeation influx rate of [125I]TAPA after an i.v. bolus injection (7.3 pmol/g body weight) into mice was estimated to be 0.265 +/- 0.025 microL/(min.g of brain). The influx rate of [125I]TAPA was reduced 70% by the coadministration of unlabeled TAPA (33 nmol/g of brain), suggesting the existence of a specific transport system for TAPA at the BBB. In order to elucidate the BBB transport mechanism of TAPA, a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4) was used as an in vitro model of the BBB. The acid-resistant binding of [125I]TAPA, which represents the internalization of the peptide into cells, was temperature- and concentration-dependent with a half-saturation constant of 10.0 +/- 1.7 microm. The acid-resistant binding of TAPA was significantly inhibited by 2,4-dinitrophenol, dansylcadaverine (an endocytosis inhibitor) and poly-l-lysine and protamine (polycations). These results suggest that TAPA is transported through the BBB by adsorptive-mediated endocytosis, which is triggered by binding of the peptide to negatively charged sites on the surface of brain capillary endothelial cells. Blood-brain barrier transport via adsorptive-mediated endocytosis plays a key role in the expression of the potent opioid activity of TAPA in the CNS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号