首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   15篇
  国内免费   7篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   5篇
  2012年   3篇
  2011年   5篇
  2010年   7篇
  2009年   14篇
  2008年   7篇
  2007年   10篇
  2006年   9篇
  2005年   11篇
  2004年   10篇
  2003年   17篇
  2002年   10篇
  2001年   8篇
  2000年   12篇
  1999年   15篇
  1998年   9篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
11.
The population structure and dynamics of Ainsliaea apiculata, a forest understory evergreen herb widely distributed in Japan, was examined in a Chamaecyparis obtusa forest in Ibaraki Prefecture, central Japan (36°51N, 140°33E; 750 m a.s.l.). The mean population growth rate () calculated from the transition matrices for 4 years was 0.69 per year, predicting that the population size will decrease remarkably. There was a significant positive correlation between the survival of old leaves and the growth of new shoots in the following year. The shoots, especially new leaves, were damaged severely by herbivores (caterpillars of Leioptilus sp.). The survival rate of leaves formed in the previous spring to the next spring was remarkably low (41–54%). The growth of new shoots depended mainly on the reserves contained in old shoots, especially those in old leaves. New shoots of A. apiculata began to develop in spring, even though they were formed in autumn of the previous year. A defoliation experiment also showed that the removal of old shoots at the beginning of the growing season significantly inhibited the growth of new shoots. Damage to old shoots by herbivores severely influenced the growth and population dynamics of A. apiculata.  相似文献   
12.
BACKGROUND AND AIMS: Betula ermanii, B. maximowicziana and B. platyphylla var. japonica have heterophyllous leaves (i.e. early leaves and late leaves) and are typical pioneer species in northern Japan. Chemical and physical defences against herbivores in early and late leaves of these species were studied. METHODS: Two-year-old seedlings were grown under full sunlight in a single growing season. Three-week-old leaves of each seedling were harvested three times (May, July and October). Total phenolics and condensed tannin content were determined for chemical defence and leaf toughness and trichome density were assessed for physical defence. Defoliation of early leaves in May was also performed to study the contribution of early leaves to subsequent growth. KEY RESULTS: Chemical and physical defences were greater in early than late leaves in B. platyphylla and B. ermanii, whereas the reverse was true in B. maximowicziana. In contrast to its weak chemical defences, the trichome density in B. maximowicziana was very high. In B. platyphylla and B. ermanii, the relative growth rates (RGR) were greater early in the growing season. Negative effects on growth of removal of early leaves were significant only in B. platyphylla. CONCLUSIONS: B. platyphylla and B. ermanii invest in defence in early rather than late leaves, since early leaves are crucial to subsequent growth. In contrast, B. maximowicziana more strongly defends its late leaves, since its RGR is maintained at the same level throughout the growing season.  相似文献   
13.
Lei TT  Wilson LJ 《Annals of botany》2004,94(1):179-186
BACKGROUND AND AIMS: Leaf area of cotton seedlings (Gossypium hirsutum) can be reduced by as much as 50 % by early season thrips infestations, but it is well documented that plants can regain the difference in leaf area once infestation ceases. The processes involved in the recovery have not been identified. Hypotheses include enhancement of the photosynthetic rate of the damaged leaves, more efficient leaf construction (i.e. more leaf area per unit of dry matter invested in new leaves), and more branching. METHODS: This 2-year field study examined these hypotheses and found that thrips-affected plants recovered from a 30 % reduction in total leaf area. During the recovery period, repeated measurements of gas exchange, leaf morphology and individual leaf areas at all nodes were made to assess their contribution to the recovery. KEY RESULTS: Recovery was not achieved through the previously proposed mechanisms. The pattern of nodal development indicated that the duration of leaf expansion of the smaller deformed leaves was shorter than that of control leaves, possibly because they had fewer cells. The production and expansion of healthy upper node leaves in thrips-affected plants could, therefore, begin sooner, about 1-2.5 nodes in advance of control plants. The proposed process of recovery was evident but weaker in the second year where thrips numbers were higher. CONCLUSIONS: It is concluded that thrips-affected plants overcame the leaf area disparity through an accelerated ontogeny of main stem leaves. By completing the expansion of smaller but normally functioning lower node leaves earlier, resources were made available to the unfolding of larger upper node leaves in advance of control plants. The generality of this mode of plant resistance in pest damage remains to be determined.  相似文献   
14.
15.
Abstract.  1. Stage-specific survival and recruitment of spruce budworm were measured by frequent sampling of foliage in four outbreak populations over a 15-year period in Ontario and Quebec, Canada.
2. Patterns of change in population density during the outbreak collapse phase were closely linked to changes in survival of the late immature stages, and were determined largely by the impact of natural enemies.
3. Host-plant feedback also contributed significantly to survival patterns throughout the outbreak: annual defoliation influenced survival of fourth and fifth instars and fecundity while cumulative defoliation influenced survival of the very early larval stages (first and second) via impacts on stand condition.
4. Inclusion of this host-plant feedback reveals spruce budworm population dynamics as a function of density-related trophic interactions that vary in their order and strength of influence over time. This view re-introduces the importance of forest interactions as a component of dynamics of the spruce budworm.  相似文献   
16.
17.
Controlled glasshouse experiments were conducted to investigate the temporal progress of powdery mildew and its effects on host dynamics of tomato, without and with one fungicide application. Healthy tomato transplants (5‐ to 6‐week old) were artificially inoculated with powdery mildew, and disease progress as well as host growth were monitored in both fungicide sprayed and unsprayed treatments and compared with non‐inoculated plants. Actual disease severity on a plant basis increased in unsprayed plants reaching maximum severity in the proportionate range of 0.53–0.83. One fungicide spray significantly reduced the maximum disease severity by two‐ to fourfolds. Despite adjustments for defoliation, declines in the proportion of disease severity between successive assessments were evident. Whereas the estimated growth rates of diseased plants were significantly lower than that of healthy plants, no significant differences were observed in the maximum leaf area formed of inoculated and non‐inoculated plants. A considerable effect of the powdery mildew epidemics was manifested through hastened shrivelling and defoliation of diseased leaves within the tomato canopy. An average of 18–29% and 40–52% of leaves had abscised from the plant canopy at the last date of assessment in sprayed and non‐sprayed plants, respectively. Accordingly, defoliation accounted for 14–33.3% and 58.3–63.1% losses in leaf area of sprayed and non‐sprayed plants, respectively. Duration of healthy leaf area and yield of inoculated plants were also significantly reduced by powdery mildew epidemics.  相似文献   
18.
19.
Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio‐temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the specific requirements of arthropods when applying grazing management and to include arthropods in monitoring schemes. Conservation strategies aiming at maximizing heterogeneity, including regulation of herbivore densities (through human interventions or top‐down control), maintenance of different types of management in close proximity and rotational grazing regimes, are the most promising options to conserve arthropod diversity.  相似文献   
20.
In dioecious species, females typically allocate more resources to reproduction and incur greater costs of reproduction than males. In gynodioecious species, sex-based differences in reproductive allocation (RA) and costs have been less studied. Such knowledge, however, is relevant to address how females establish and increase in frequency in populations. We examine RA and reproductive costs by comparing fruit set, the proportion of biomass allocated to reproduction, and the responses of fruit set and vegetative growth to shoot defoliation in females and hermaphrodites in gynodioecious Leucopogon melaleucoides. Relative to hermaphrodites, females exhibited a two-fold fruit set advantage. Female fruit set increased proportionately with flower number, but hermaphrodite fruit set was reduced on plants with more flowers. Sex-based differences in allocation to other traits were small. Thus, female RA at flowering was similar to hermaphrodite RA, but was 1.4-fold greater at fruiting. Relative to controls, defoliation reduced fruit set and the percentage of shoots that produced new vegetative growth similarly in both sexes. However, females had a lower proportion of shoots with new growth overall. Further, defoliation on females reduced the dry mass of new growth by 44% compared with controls, whereas hermaphrodites were not affected. These results indicate a trade-off between reproduction and vegetative growth, and greater female costs of reproduction, particularly under resource-limiting conditions. In the absence of compensatory traits to offset higher female reproductive costs, such trade-offs have the potential to retard the spread of females in gynodioecious populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号