首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   21篇
  国内免费   16篇
  2023年   2篇
  2022年   6篇
  2021年   12篇
  2020年   10篇
  2019年   6篇
  2018年   10篇
  2017年   8篇
  2016年   12篇
  2015年   12篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   10篇
  2010年   4篇
  2009年   11篇
  2008年   11篇
  2007年   4篇
  2006年   9篇
  2005年   1篇
  2004年   7篇
  2003年   1篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1996年   2篇
  1995年   7篇
  1994年   1篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
排序方式: 共有204条查询结果,搜索用时 20 毫秒
101.
As a defensive reaction against predators the larvae of Zygaena trifolii Esper. 1783, release highly viscous fluid droplets out of cuticular cavities. The fluid appears on the cuticular surface upon contraction of the irritated segments, with no specialized muscles being involved. Two morphologically different types of cavities have been found: the larger ones are located beneath pigment spots, the smaller ones occupy the remaining surface except in the ventral region. Both types have complicated cuticular opening structures. The defensive fluid contains the cyanoglucosides linamarin and lotaustralin, the amino acid beta-cyano-L-alanine, proteins and water. Although a considerable amount of fluid (3-6 microliter per sixth-instar larva) is stored in the cuticle, fine structural examinations of the epidermis do not show any specific cells or cell areas with morphological adaptations for secretion. Further, there do not exist any major cytological differences between the cells below the cavities and in the ventral region, where those cavities are absent.  相似文献   
102.
Social bees generally host fewer nest invaders than do ants and termites. This is potentially explained by the adaptive defensive strategies of host bees when faced with nest invaders exhibiting various levels of colony integration (based on adaptations to the nest habitat and frequency of nest inhabitation). In the present study, experiments are performed to determine the behaviour at the nest entrance of European honeybee guards Apis mellifera L. (Hymenoptera: Apidae) toward beetle invaders of various levels of behavioural integration into colonies. The species used to test this include Aethina tumida Murray (Coleoptera: Nitidulidae), which is regarded as a highly integrated, unwelcome guest (synechthran) or true guest (symphile); Lobiopa insularis Laporte (Coleoptera: Nitidulidae) and Epuraea luteola Erichson (Coleoptera: Nitidulidae) that are accidentals; and Carpophilus humeralis Fabricius (Coleoptera: Nitidulidae), Carpophilus hemipterus L. (Coleoptera: Nitidulidae) and Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), all of which are species that are not integrated into honeybee colonies. The responses of guard bees to a control bead also are noted. In general, bees ignore T. castaneum and E. luteola to a greater extent than other beetle species. Bees make contact with the black glass bead (a non‐aggressive behaviour) more than they do all beetle species. Bees treat A. tumida more defensively than they treat any other beetle species and the level of bee defensiveness varies by colony. These data suggest an adaptive heightened defensive response by bees toward the most integrated colony intruder but a significantly reduced level of response toward invaders representing all other levels of colony integration.  相似文献   
103.
Tropospheric ozone is an abiotic stress of increasing importance in the context of global climate change. This greenhouse gas is a potent phytotoxic molecule with demonstrated negative effects on crop yield and natural ecosystems. Recently, oxidative stress has been proposed as a mechanism that could regulate the interaction between cool-season grasses and Epichloë endophytes. We hypothesized that exposure of Lolium multiflorum plants, hosting endophytes to an ozone-polluted environment at different ontogenetic phases, would impact the trans-generational dynamics of the vertically transmitted fungal symbiont. Here, we found that the ozone-induced stress on the mother plants did not affect the endophyte vertical transmission but it impaired the persistence of the fungus in the seed exposed to artificial ageing. Endophyte longevity in seed was reduced by exposure of the mother plant to ozone. Although ozone exposure did not influence either the endophyte mycelial concentration or their compound defences (loline alkaloids), a positive correlation was observed between host fitness and the concentration of endophyte-derived defence compounds. This suggests that fungal defences in grass seeds were not all produced in situ but remobilized from the vegetative tissues. Our study reveals ozone trans-generational effects on the persistence of a beneficial symbiont in a host grass.  相似文献   
104.
105.
Fei Wang  E Li  Lei De  Qiwen Wu  Yifeng Zhang 《Current biology : CB》2021,31(11):2263-2273.e3
  相似文献   
106.
Classic research on elevational gradients in plant–herbivore interactions holds that insect herbivore pressure is stronger under warmer climates of low elevations. However, recent work has questioned this paradigm, arguing that it oversimplifies the ecological complexity in which plant–insect herbivore interactions are embedded. Knowledge of antagonistic networks of plants and herbivores is however crucial for understanding the mechanisms that govern ecosystem functioning. We examined herbivore damage and insect herbivores of eight species of genus Ficus (105 saplings) and plant constitutive defensive traits of two of these species, along a rain forest elevational gradient of Mt. Wilhelm (200–2,700 m a.s.l.), in tropical Papua New Guinea. We report overall herbivore damage 2.4% of leaf area, ranging from 0.03% in Ficus endochaete at 1,700 m a.s.l. to 6.1% in F. hombroniana at 700 m a.s.l. Herbivore damage and herbivore abundances varied significantly with elevation, as well as among the tree species, and between the wet and dry season. Community-wide herbivore damage followed a hump-shaped pattern with the peak between 700 and 1,200 m a.s.l. and this pattern corresponded with abundance of herbivores. For two tree species surveyed in detail, we observed decreasing and hump-shaped patterns in herbivory, in general matching the trends found in the set of plant defenses measured here. Our results imply that vegetation growing at mid-elevations of the elevational gradient, that is at the climatically most favorable elevations where water is abundant, and temperatures still relatively warm, suffers the maximum amount of herbivorous damage which changes seasonally, reflecting the water availability.  相似文献   
107.
The pygidial gland secretions of water beetles of the dytiscidae have been shown to contain phenylpyruvic acid p-hydroxyphenylacetic acid, hydrocinnamic acid and 2-methyl-2-butenoic acid by a combination of several mass spectroscopical techniques, thin layer chromatography, UV spectometry and gas chromatography. The possible role of these compounds (auxin activity, antimicrobial properties, surfactant properties) and the co-occuring 3-indoleacetic  相似文献   
108.
植物与昆虫相互作用一直是昆虫进化和生态学研究的热点,了解这种互作关系有利于进一步探索植物-昆虫的协调进化以及有效地管理农业生态系统中的害虫。本文简要地概述了麦类作物主要防御性次生化合物对蚜虫的防御作用,麦类作物体内防御酶与其抗蚜性关系,以及蚜虫对植物防御的反应等方面最新研究进展,并提出深入研究麦类作物与蚜虫互作生化机制的意义和前景。  相似文献   
109.
Many exocrine products used by ground beetles are pheromones and allomones that regulate intra- and interspecific interactions and contribute to their success in terrestrial ecosystems. This mini-review attempts to unify major themes related to the exocrine glands of carabid beetles. Here we report on both glandular structures and the role of secretions in carabid adults, and that little information is available on the ecological significance of glandular secretions in pre-imaginal stages.  相似文献   
110.
Immune systems have repeatedly diversified in response to parasite diversity. Many animals have outsourced part of their immune defence to defensive symbionts, which should be affected by similar evolutionary pressures as the host’s own immune system. Protective symbionts provide efficient and specific protection and respond to changing selection pressure by parasites. Here we use the aphid Aphis fabae, its protective symbiont Hamiltonella defensa, and its parasitoid Lysiphlebus fabarum to test whether parasite diversity can maintain diversity in protective symbionts. We exposed aphid populations with the same initial symbiont composition to parasitoid populations that differed in their diversity. As expected, single parasitoid genotypes mostly favoured a single symbiont that was most protective against that particular parasitoid, while multiple symbionts persisted in aphids exposed to more diverse parasitoid populations, which in turn affected aphid population density and rates of parasitism. Parasite diversity may be crucial to maintaining symbiont diversity in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号