首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2436篇
  免费   309篇
  国内免费   408篇
  2024年   20篇
  2023年   80篇
  2022年   72篇
  2021年   99篇
  2020年   153篇
  2019年   162篇
  2018年   125篇
  2017年   127篇
  2016年   101篇
  2015年   126篇
  2014年   121篇
  2013年   153篇
  2012年   112篇
  2011年   100篇
  2010年   100篇
  2009年   121篇
  2008年   124篇
  2007年   148篇
  2006年   138篇
  2005年   106篇
  2004年   85篇
  2003年   86篇
  2002年   69篇
  2001年   71篇
  2000年   64篇
  1999年   60篇
  1998年   60篇
  1997年   56篇
  1996年   42篇
  1995年   31篇
  1994年   30篇
  1993年   29篇
  1992年   31篇
  1991年   25篇
  1990年   25篇
  1989年   13篇
  1988年   18篇
  1987年   4篇
  1986年   9篇
  1985年   9篇
  1984年   14篇
  1983年   1篇
  1982年   11篇
  1981年   5篇
  1980年   7篇
  1979年   1篇
  1978年   4篇
  1977年   3篇
  1975年   1篇
  1958年   1篇
排序方式: 共有3153条查询结果,搜索用时 15 毫秒
81.
温带森林生态系统水热通量在多时间尺度上受各种生物物理因子的影响。该研究假设这些因子对水热通量的影响机制具有时间尺度分异性, 通过涡度相关法(EC)于2019年全年对北京松山典型天然落叶阔叶林生态系统蒸散发(ET)、显热通量(H)、潜热通量(LE)、土壤热通量(G)、饱和水汽压差(VPD)、空气温度(Ta)、光合有效辐射(PAR)、归一化植被指数(NDVI)及10 cm深度土壤水分(VWC)等要素进行原位连续监测, 使用小波分析的方法分析了日、季节尺度上生物与非生物因子对生态系统能量分配与水汽交换的调控机制。主要研究结果: 2019年松山天然落叶阔叶林生态系统年均波文比(β)为1.53。ET具有明显的季节变化特征, 从第100天开始逐渐增加, 7月达到峰值, 第300天下降到最低水平。ET最大日累计值为5.01 mm·d-1, 年累计值为476.2 mm, 年降水量为503.3 mm。在日尺度上水热通量与VPD间滞后时间最短, 为3.36 h。在季节尺度上与PAR间滞后时间最短, 为8天。季节尺度上PAR通过VPD来对ET造成间接影响, 而对β造成直接影响。该研究发现不同时间尺度上水热通量与环境因子间的时滞关系, 为选择模型在不同时间尺度下北方温带落叶阔叶林生态系统过程的最佳输入参数提供科学支持。  相似文献   
82.
Tropical dry forest tree species are recognized for their high resprouting ability after disturbance. We tested whether species that commonly produce root and stem suckers can be propagated by large stem and root cuttings, a useful method for landscape restoration programs. We performed four experiments: (1) In a greenhouse, we tested the propagation of six species using large stem cuttings collected from early successional sites. We used the following treatments: (i) dry season collection and planting; (ii) dry season collection, storage in humid soil, and wet season planting; (iii) wet season collection and planting; and (iv) wet season collection and planting after treatment with commercial NAA auxin. (2) Stem cuttings of Myracrodruon urundeuva were planted in a pasture during the rainy season after either NAA, IBA, or no auxin treatment. (3) As a control experiment, we also planted cuttings of Spondias mombin, a species known for successfully regenerating from cuttings. (4) Root cuttings of six species were collected in recently plowed pastures and planted in the greenhouse with and without treatment with NAA auxin. No root cuttings rooted. Only M. urundeuva and Astronium fraxinifolium stem cuttings rooted. Maximum success was obtained for stem cuttings collected and planted in the dry season (23%). Only 13% of M. urundeuva had sprouted by the 15th month of the field experiment. As a result, large cuttings are not recommended for propagation of the studied species. Future studies should include development of suitable methods of root harvesting and prospection of traditional knowledge for species selection.  相似文献   
83.
84.
P. Giordani 《Plant biosystems》2013,147(3):628-637
Abstract

Epiphytic lichens are one of the taxonomic groups most sensitive to forest management. Nevertheless, they have not yet been exhaustively included in the assessment of Sustainable Forest Management. This work aimed at evaluating the effects of forest management on epiphytic lichens in coppiced forests, exploring the spatial patterns of diversity and the composition of communities. Moreover, the goal was to compare the performance of four potential indicators for monitoring the effects of forest management on epiphytic lichens: total lichen diversity, species associated with intensive management, species associated with aged coppiced woodlands and Indicator Species Ratio (ISR). In humid Mediterranean Liguria, 50 sampling units were chosen in Castanea sativa and deciduous Quercus spp. forests subjected to different forest management practices: intensively managed coppice and aged coppice/high forest. The effect of forest management was evident in terms of species composition, since it was possible to find significantly associated species for each of the two management types. At each sampling site, the four indicators were calculated using Indicator Value Analysis and compared through correspondence analysis. The ISR was shown to be a more effective indicator, being independent of floristic composition and the occurrence of rare species.  相似文献   
85.
Litter decay is a significant part of carbon budget. Due to strong environmental control, the changes in the environment may drastically influence the litter decay rates. Litter decomposition of eight dry tropical woody species, viz. Shorea robusta, Buchanania lanzan, Diospyros melanoxylon, Lagerstroemia parviflora, Lannea coromandelica, Terminalia tomentosa, Holarrhena antidysenterica and Lantana camara was studied to document the effect of intra-annual changes in the environment. Litter decomposition was monitored at monthly intervals at five sites using litter bag technique over an annual cycle in a dry tropical deciduous forest of Vindhyan highland, India. Weight loss differed among species and through months, and ranged from 15.38% in L. camara at Kotwa site in January to 30.72% in T. tomentosa at Hathinala site in August. Peak weight loss occurred in August and averaged 46.2% across species and sites. Nitrogen and phosphorus mineralization rates also varied significantly from species to species. T. tomentosa having higher nitrogen content and lower C/N ratio than other species exhibited faster weight loss. Nitrogen and phosphorus contents of litter showed significant positive correlation with weight loss. C/N ratio was negatively related to decay constant, and the weight loss was positively related to the soil surface temperature as well as soil moisture content.  相似文献   
86.
87.
Among the plant life-forms, lianas, the wood climbers still remain less studied than trees. The forests of Eastern Ghats of India are also relatively under studied compared with the Western Ghats biodiversity hotspot. We conducted a large-scale, landscape-level investigation of liana diversity in six hill complexes of the South Eastern Ghats, which covers 4297 km2. We divided the study area into 6.25 km × 6.25 km grids and within each grid a 0.5 ha (5 m × 1000 m) transect was established and all lianas ≥1.5 cm diameter at breast height (dbh) were inventoried in 110 transects totalling a 55-ha area. Liana diversity totalled 143 species in 83 genera and 37 families in the 55 ha sampled. Of these 20 species (28.6%) were endemic to peninsular India and 7 (10%) species belonged to the rare and endangered category. Liana species richness ranged from 8–35 species and density 95–544 individuals per transect. A total of 32 033 liana individuals were enumerated in the 55 ha and the mean abundance was 291 individuals per transect. Across sites, liana abundance varied significantly, but not species richness and basal area. Asclepiadaceae (13 species, 9%) and Apocynaceae (11 species, 8%) constituted the most diverse liana families, followed by Papilionaceae, Vitaceae (10 each, 7%), Convolvulaceae, Mimosaceae, Oleaceae (8 each, 6%), Capparaceae, Rhamnaceae (7 each, 5%) and Menispermaceae (5 species, 3%). In liana stem size distribution, the lowest diameter class (1.5–3 cm dbh) accounted for greatest species richness (137 species, 96%), abundance (27 358 individuals, 85%) and basal area (13.5 m2, 36%). The stem twiners were the predominant climber type in terms of species richness (61 species, 42.65%), whereas the armed scramblers were abundant due to stem density (21 571 individuals, 67.34%). The dispersal modes of lianas, assessed by fruit types, revealed zoochory as the prevalent mode (85 species, 59%) indicating the faunal dependence of lianas in the Eastern Ghats landscape. Liana diversity of the Eastern Ghats was compared with inventories made across the tropics. With these baseline data generated on lianas, the importance of biodiversity conservation of the already fragmented South Eastern Ghats region is underlined and potential areas of further research on liana ecology are suggested.  相似文献   
88.
Elevated atmospheric CO2 concentrations ([CO2]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2] may be particularly large in deserts, but information on their long‐term response is unknown. We evaluated the cumulative effects of elevated [CO2] on primary production at the Nevada Desert FACE (free‐air carbon dioxide enrichment) Facility. Aboveground and belowground perennial plant biomass was harvested in an intact Mojave Desert ecosystem at the end of a 10‐year elevated [CO2] experiment. We measured community standing biomass, biomass allocation, canopy cover, leaf area index (LAI), carbon and nitrogen content, and isotopic composition of plant tissues for five to eight dominant species. We provide the first long‐term results of elevated [CO2] on biomass components of a desert ecosystem and offer information on understudied Mojave Desert species. In contrast to initial expectations, 10 years of elevated [CO2] had no significant effect on standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground components. However, elevated [CO2] increased short‐term responses, including leaf water‐use efficiency (WUE) as measured by carbon isotope discrimination and increased plot‐level LAI. Standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground pools significantly differed among dominant species, but responses to elevated [CO2] did not vary among species, photosynthetic pathway (C3 vs. C4), or growth form (drought‐deciduous shrub vs. evergreen shrub vs. grass). Thus, even though previous and current results occasionally show increased leaf‐level photosynthetic rates, WUE, LAI, and plant growth under elevated [CO2] during the 10‐year experiment, most responses were in wet years and did not lead to sustained increases in community biomass. We presume that the lack of sustained biomass responses to elevated [CO2] is explained by inter‐annual differences in water availability. Therefore, the high frequency of low precipitation years may constrain cumulative biomass responses to elevated [CO2] in desert environments.  相似文献   
89.
90.
In this survey, we investigated the diversity and community structure of bats in the Centre Region of Cameroon with respect to their distribution in the different vegetation zones of the region. We mist-netted bats monthly from January 2016 to June 2017 for five nonconsecutive nights per month. Thirty-nine sites were surveyed: 24 in traditional farms, nine in the savannah and six in the forests. A total of 668 bats were captured during 81 nights of capture, covering seven families, 21 genera and 36 species. This included 26 species in traditional farms, 13 species in savannah and 11 species in the forest. Micropteropus pusillus was the most abundant species (30.7%) recorded, followed by Hipposideros ruber (24.9%). The sample efficiency was estimated at 72.1% with fitted species accumulation curves not reaching asymptotes for the three habitat types, suggesting that the survey did not record all the bats present. There was an indication of general increased in abundance of bats during the dry and rainy seasons but it is not significant (Mann–Whitney U: 783.5, p = .195). The rarity index was highest in traditional farms (0.44), followed by savannah (0.38) and then forest (0.33). This preliminary survey provides baseline data on the distribution of bats in the different vegetation types in the Centre Region of Cameroon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号