首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   461篇
  免费   15篇
  国内免费   8篇
  2023年   6篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   11篇
  2017年   5篇
  2016年   3篇
  2015年   16篇
  2014年   23篇
  2013年   40篇
  2012年   17篇
  2011年   39篇
  2010年   23篇
  2009年   22篇
  2008年   14篇
  2007年   30篇
  2006年   24篇
  2005年   26篇
  2004年   13篇
  2003年   10篇
  2002年   10篇
  2001年   7篇
  2000年   9篇
  1999年   5篇
  1998年   11篇
  1997年   10篇
  1996年   15篇
  1995年   9篇
  1994年   11篇
  1993年   7篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   7篇
  1987年   6篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
排序方式: 共有484条查询结果,搜索用时 78 毫秒
51.
Skeletal muscles cope with a large range of activities, from being able to support the body weight during long periods of upright standing to perform explosive movements in response to an unexpected threat. This requires systems for energy metabolism that can provide energy during long periods of moderately increased energy consumption as well as being able to rapidly increasing the rate of energy production more than 100-fold in response to explosive contractions. In this short review we discuss how muscles can deal with these divergent demands. We first outline the major energy metabolism pathways in skeletal muscle. Next we describe metabolic differences between different muscle fiber types. Contractile performance declines during intense activation, i.e. fatigue develops, and we discuss likely underlying mechanisms. Finally, we discuss the ability of muscle fibers to adapt to altered demands, and mechanisms behind these adaptations. The accumulated experimental evidence forces us to conclude that most aspects of energy metabolism involve multiple and overlapping signaling pathways, which indicates that the control of energy metabolism is too important to depend on one single molecule or mechanism.  相似文献   
52.
It has long been believed that maintenance of low Na+ : K+ ratios in the cytosol of plant cells is critical to the plant's ability to tolerate salinity stress. Direct measurements of such ratios, however, have been few. Here we apply the non-invasive technique of compartmental analysis, using the short-lived radiotracers 42K+ and 22Na+, in intact seedlings of barley (Hordeum vulgare L.), to evaluate unidirectional plasma membrane fluxes and cytosolic concentrations of K+ and Na+ in root tissues, under eight nutritional conditions varying in levels of salinity and K+ supply. We show that Na+ : K+ ratios in the cytosol of root cells adjust significantly across the conditions tested, and that these ratios are poor predictors of the plant's growth response to salinity. Our study further demonstrates that Na+ is subject to rapid and futile cycling at the plasma membrane at all levels of Na+ supply, independently of external K+, while K+ influx is reduced by Na+, from a similar baseline, and to a similar extent, at both low and high K+ supply. We compare our results to those of other groups, and conclude that the maintenance of the cytosolic Na+ : K+ ratio is not central to plant survival under NaCl stress. We offer alternative explanations for sodium sensitivity in relation to the primary acquisition mechanisms of Na+ and K+.  相似文献   
53.
Mitra K  Frank J 《FEBS letters》2006,580(14):3353-3360
The protein-conducting channel (PCC) must allow both the translocation of soluble polypeptide regions across, and the lateral partitioning of hydrophobic transmembrane helices (TMHs) into, the membrane. We have analyzed existing structures of ribosomes and ribosome-PCC complexes and observe conformational changes suggesting that the ribosome may sense and orient the nascent polypeptide and also facilitate conformational changes in the PCC, subsequently directing the nascent polypeptide into the appropriate PCC-mediated translocation mode. The PCC is predicted to be able to accommodate one central, consolidated channel or two segregated pores with different lipid accessibilities, which may enable the lipid-mediated partitioning of a TMH from one pore, while the other, aqueous, pore allows translocation of a hydrophilic polypeptide segment. Our hypothesis suggests a plausible mechanism for the transitioning of the PCC between different configurations.  相似文献   
54.
Kim HS  Kim EM  Lee J  Yang WH  Park TY  Kim YM  Cho JW 《FEBS letters》2006,580(9):2311-2316
The objective of this study was to identify proteins modified with O-linked N-acetylglucosamine (O-GlcNAc) in pancreatic beta-cells and to understand their roles in cell death under hyperglycemic conditions. Here we report that heat shock protein 60 (HSP60) is modified with O-GlcNAc. Levels of O-GlcNAcylated HSP60 increased twofold in response to hyperglycemic conditions. HSP60 is a chaperonin known to bind to Bax in the cytoplasm under normoglycemic conditions. Under hyperglycemic conditions, Bax detached from O-GlcNAcylated HSP60 and translocated to mitochondria. Hyperglycemic conditions were also associated with cytochrome c release, caspase-3 activation, and cell death, suggesting that elevated O-GlcNAcylation of HSP60 interferes with HSP60-Bax interactions, leading to pancreatic beta-cell death.  相似文献   
55.
Physiological regulation of Ca(2+) release from the endoplasmic reticulum (ER) is critical for cell function. Recent direct measurements of free [Ca(2+)] inside the ER ([Ca(2+)](ER)) revealed that [Ca(2+)](ER) itself is a key regulator of ER Ca(2+) handling. However, the role of this new regulatory process in generating various patterns of Ca(2+) release remains to be elucidated in detail. Here, we incorporate the recently quantified experimental correlations between [Ca(2+)](ER) and Ca(2+) movements across the ER membrane into a mathematical model ER Ca(2+) handling. The model reproduces basic experimental dynamics of [Ca(2+)](ER). Although this was not goal in model design, the model also exhibits mechanistically unclear experimental phenomena such as "quantal" Ca(2+) release, and "store charging" by increasing resting cytosolic [Ca(2+)]. While more complex explanations cannot be ruled out, on the basis of our data we propose that "quantal release" and "store charging" could be simple re-equilibration phenomena, predicted by the recently quantified biophysical dynamics of Ca(2+) movements across the ER membrane.  相似文献   
56.
Liu Y  Taylor CW 《FEBS letters》2006,580(17):4114-4120
Arachidonic acid (AA) regulates many aspects of vascular smooth muscle behaviour, but the mechanisms linking receptors to AA release are unclear. In A7r5 vascular smooth muscle cells pre-labelled with (3)H-AA, vasopressin caused a concentration-dependent stimulation of 3H-AA release that required phospholipase C and an increase in cytosolic [Ca2+]. Ca2+ release from intracellular stores and Ca2+ entry via L-type channels or the capacitative Ca2+ entry pathway were each effective to varying degrees. Selective inhibitors of PLA2 inhibited the 3H-AA release evoked by vasopressin, though not the underlying Ca2+ signals, and established that cPLA2 mediates the release of AA. We conclude that in A7r5 cells vasopressin stimulates AA release via a Ca2+-dependent activation of cPLA2.  相似文献   
57.
Charette SJ  Cosson P 《FEBS letters》2006,580(20):4923-4928
Exocytosis of late endocytic compartments in Dictyostelium has mostly been studied by live microscopy. Here we show that this exocytosis is accompanied by a complete fusion of late endosomes with the plasma membrane resulting in the transient formation of membrane microdomains that can be visualized by immunofluorescence in fixed cells. This permitted to demonstrate that fusion of late endocytic compartments with the cell surface does not occur in regions of the plasma membrane engaged in the formation of pseudopods, macropinosomes or phagosomes. Our results propose that exocytosis of late endosomes and actin-driven membrane remodeling are mutually exclusive processes.  相似文献   
58.
The vesicle‐trafficking protein SYP121 (SYR1/PEN1) was originally identified in association with ion channel control at the plasma membrane of stomatal guard cells, although stomata of the Arabidopsis syp121 loss‐of‐function mutant close normally in ABA and high Ca2+. We have now uncovered a set of stomatal phenotypes in the syp121 mutant that reduce CO2 assimilation, slow vegetative growth and increase water use efficiency in the whole plant, conditional upon high light intensities and low relative humidity. Stomatal opening and the rise in stomatal transpiration of the mutant was delayed in the light and following Ca2+‐evoked closure, consistent with a constitutive form of so‐called programmed stomatal closure. Delayed reopening was observed in the syp121, but not in the syp122 mutant lacking the homologous gene product; the delay was rescued by complementation with wild‐type SYP121 and was phenocopied in wild‐type plants in the presence of the vesicle‐trafficking inhibitor Brefeldin A. K+ channel current that normally mediates K+ uptake for stomatal opening was suppressed in the syp121 mutant and, following closure, its recovery was slowed compared to guard cells of wild‐type plants. Evoked stomatal closure was accompanied by internalisation of GFP‐tagged KAT1 K+ channels in both wild‐type and syp121 mutant guard cells, but their subsequently recycling was slowed in the mutant. Our findings indicate that SYP121 facilitates stomatal reopening and they suggest that K+ channel traffic and recycling to the plasma membrane underpins the stress memory phenomenon of programmed closure in stomata. Additionally, they underline the significance of vesicle traffic for whole‐plant water use and biomass production, tying SYP121 function to guard cell membrane transport and stomatal control.  相似文献   
59.
60.
Variceal bleeding due to abnormal platelet function is a well-known complication of cirrhosis. Nitric oxide-related stress has been implicated in the pathogenesis of liver cirrhosis.In the present investigation,we evaluated the level of platelet aggregation and concomitant changes in the level of platelet cytosolic calcium (Ca2+), nitric oxide (NO) and NO synthase (NOS) activity in liver cirrhosis.The aim of the present study was to investigate whether the production of NO by NOS and level of cytosolic Ca2+ influence the aggregation of platelets in patients with cirrhosis of the liver.Agonist-induced aggregation and the simultaneous changes in the level of cytosolic Ca2+, NO and NOS were monitored in platelets of patients with cirrhosis.Platelet aggregation was also measured in the presence of the eNOS inhibitor,diphenylene iodinium chloride (DIC).The level of agonist-induced platelet aggregation was significantly low in the platelets of patients with cirrhosis compared with that in platelets from normal subjects.During the course of platelet aggregation,concomitant elevation in the level of cytosolic Ca2+ was observed in normal samples,whereas the elevation was not significant in platelets of patients with cirrhosis.A parallel increase was observed in the levels of NO and NOS activity.In the presence of the eNOS inhibitor,platelet aggregation was enhanced and accompanied by an elevated calcium level.The inhibition of platelet aggregation in liver cirrhosis might be partly due to greater NO formation by eNOS.Defective Ca2+ release from the internal stores to the cytosol may account for inhibition of aggregation of platelets in cirrhosis.The NO-related defective aggregation of platelets in patients with cirrhosis found in our study is of clinical importance,and the underlying mechanism of such changes suggests a possible therapeutic strategy with cell-specific NO blockers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号