首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   15篇
  国内免费   8篇
  2023年   6篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   11篇
  2017年   5篇
  2016年   3篇
  2015年   16篇
  2014年   23篇
  2013年   40篇
  2012年   17篇
  2011年   39篇
  2010年   23篇
  2009年   22篇
  2008年   14篇
  2007年   30篇
  2006年   24篇
  2005年   26篇
  2004年   13篇
  2003年   10篇
  2002年   10篇
  2001年   7篇
  2000年   9篇
  1999年   5篇
  1998年   11篇
  1997年   10篇
  1996年   15篇
  1995年   9篇
  1994年   11篇
  1993年   7篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   7篇
  1987年   6篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
排序方式: 共有483条查询结果,搜索用时 15 毫秒
31.
The cloning of a G protein-coupled, extracellular Ca2+ (Ca o 2+ )-sensing receptor (CaR) has afforded a molecular basis for a number of the known effects of Ca o 2+ on tissues involved in maintaining systemic calcium homeostasis, especially parathyroid gland and kidney. In addition to providing molecular tools for showing that CaR messenger RNA and protein are present within these tissues, the cloned CaR has permitted documentation that several human diseases are the result of inactivating or activating mutations of this receptor as well as generation of mice that have targeted disruption of the CaR gene. Characteristic changes in the functions of parathyroid and kidney in these patients as well as in the CaR “knockout” mice have elucidated considerably the CaR’s physiological roles in mineral ion homeostasis. Nevertheless, a great deal remains to be learned about how this receptor regulates the functioning of other tissues involved in Ca o 2+ metabolism, such as bone and intestine. Further study of these human diseases and of the mouse models will doubtless be useful in gaining additional understanding of the CaR’s roles in these latter tissues. Furthermore, we understand little of the CaR’s functions in tissues that are not directly involved in systemic mineral ion metabolism, where the receptor probably serves diverse other roles. Some of these functions may be related to the control of intra- and local extracellular concentrations of Ca2+, while others may be unrelated to either systemic or local ionic homeostasis. In any case, the CaR and conceivably additional receptors/sensors for Ca2+ or other extracellular ions represent versatile regulators of a wide variety of cellular functions and represent important targets for novel classes of therapeutics.  相似文献   
32.
A single degenerate glutamine synthetase (GS)-specific primer was used to amplify the 3′ end of cDNAs derived from different GS genes that are expressed in leaves and roots of sunflower (Helianthus annuus L. cv. Peredovic). Four types of GS cDNA (I, II, III and IV) were simultaneously amplified from leaves and five types (I, II, V, VI, VII) from roots with a minimum investment of time and experimental work. cDNAs II, III and IV encode chloroplastic isoforms as deduced by the presence of chloroplastic GS-specific features in their sequences. The rest of cDNAs codifies cytosolic isoforms. Using cDNA-specific probes and primers, homologous sequences to all GS cDNAs amplified from cv. Peredovic, except to cDNAs III and IV, were detected in the inbred line R41. This result strongly suggests that the three cDNAs for chloroplastic isoform are allelic sequences from the same locus, and since cDNA type IV contains sequences derived from cDNAs II and III, it indicates a recombinational origin. The results presented are consistent with the existence of a GS gene family in sunflower with at least five members. Four of them, named ggs1.1 to ggs1.4, codify for the cytosolic isoforms (cDNAs I, V, VI and VII). A fifth member, named ggs2, from which three allelic sequences (cDNAs II, III and IV) have been cloned, encodes the chloroplastic isoform. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
33.
A cDNA clone for the cytosolic Cu/Zn superoxide dismutase (Cu/Zn SOD) from Chinese cabbage (Brassica campestris ssp.pekinensis) was isolated and its DNA sequence was determined. The cDNA clone contains a complete coding sequence which encodes a protein of 152 amino acids and a 3-untranslated region including a poly A signal. The deduced amino acid sequence shows that it is highly homologous to the Cu/Zn SODs from other plants (60–90%). The lack of a putative chloroplast targeting transit peptide indicates that the clone represents a cytosolic form of Cu/Zn SOD. Genomic Southern hybridization suggests that cytosolic Cu/Zn SOD genes are present in 1 or 2 copies per genome.  相似文献   
34.
35.
IL-27 is a heterodimeric cytokine that regulates both innate and adaptive immunity. The immunosuppressive effect of IL-27 largely depends on induction of IL-10-producing Tr1 cells. To date, however, effects of IL-27 on regulation of immune responses via mediators other than cytokines remain poorly understood. To address this issue, we examined immunoregulatory effects of conditional medium of bone marrow-derived macrophages (BMDMs) from WSX-1 (IL-27Rα)-deficient mice and found enhanced IFN-γ and IL-17A secretion by CD4+ T cells as compared with that of control BMDMs. We then found that PGE2 production and COX-2 expression by BMDMs from WSX-1-deficient mice was increased compared to control macrophages in response to LPS. The enhanced production of IFN-γ and IL-17A was abolished by EP2 and EP4 antagonists, demonstrating PGE2 was responsible for enhanced cytokine production. Murine WSX-1-expressing Raw264.7 cells (mWSX-1-Raw264.7) showed phosphorylation of both STAT1 and STAT3 in response to IL-27 and produced less amounts of PGE2 and COX-2 compared to parental RAW264.7 cells. STAT1 knockdown in parental RAW264.7 cells and STAT1-deficiency in BMDMs showed higher COX-2 expression than their respective control cells. Collectively, our result indicated that IL-27/WSX-1 regulated PGE2 secretion via STAT1–COX-2 pathway in macrophages and affected helper T cell response in a PGE2-mediated fashion.  相似文献   
36.
Isocitrate dehydrogenase (IDH) has been studied extensively due to its central role in the Krebs cycle, catalyzing the oxidative NAD(P)(+)-dependent decarboxylation of isocitrate to alpha-ketoglutarate and CO(2). Here, we present the first crystal structure of IDH from a psychrophilic bacterium, Desulfotalea psychrophila (DpIDH). The structural information is combined with a detailed biochemical characterization and a comparative study with IDHs from the mesophilic bacterium Desulfitobacterium hafniense (DhIDH), porcine (PcIDH), human cytosolic (HcIDH) and the hyperthermophilic Thermotoga maritima (TmIDH). DpIDH was found to have a higher melting temperature (T(m)=66.9 degrees C) than its mesophilic homologues and a suboptimal catalytic efficiency at low temperatures. The thermodynamic activation parameters indicated a disordered active site, as seen also for the drastic increase in K(m) for isocitrate at elevated temperatures. A methionine cluster situated at the dimeric interface between the two active sites and a cluster of destabilizing charged amino acids in a region close to the active site might explain the poor isocitrate affinity. On the other hand, DpIDH was optimized for interacting with NADP(+) and the crystal structure revealed unique interactions with the cofactor. The highly acidic surface, destabilizing charged residues, fewer ion pairs and reduced size of ionic networks in DpIDH suggest a flexible global structure. However, strategic placement of ionic interactions stabilizing the N and C termini, and additional ionic interactions in the clasp domain as well as two enlarged aromatic clusters might counteract the destabilizing interactions and promote the increased thermal stability. The structure analysis of DpIDH illustrates how psychrophilic enzymes can adjust their flexibility in dynamic regions during their catalytic cycle without compromising the global stability of the protein.  相似文献   
37.
The cytosolic protein degradation pathway, involving ATP-dependent proteases and ATP-independent peptidases, is important for modulating several cellular responses. The involvement of pathogen-encoded ATP-dependent proteases is well established during infection. However, the roles of ATP-independent peptidases in this process are not well studied. The functional role of Peptidase N (PepN), an ATP-independent enzyme belonging to the M1 family, during systemic infection of mice by Salmonella enterica serovar Typhimurium (Salmonella typhimurium) was investigated. In a systemic model of infection, the number of CFU of S. typhimurium containing a targeted deletion in peptidase N (DeltapepN), compared with wild type, was significantly higher in the lymph node and spleen. In addition, S. typhimurium replicated in the thymus and greatly reduced the number of immature CD4(+)CD8(+) thymocytes in a dose- and time-dependent manner. Strains lacking or overexpressing pepN were used to show that the reduction in the number of thymocytes, but not lymph node cells, depends on a critical number of CFU. These findings establish a role for PepN in reducing the in vivo CFU of S. typhimurium during systemic infection. The implications of these results, in the context of the roles of proteases and peptidases, during host-pathogen interactions are discussed.  相似文献   
38.
Ectoparasitoids inject venom into hemolymph during oviposition. We determined the influence of envenomation by the parasitoid, Habrobracon hebetor, on the hemocytes of its larval host, Galleria mellonella. An increase in both intracellular Са2+ content and phospholipase C activity of the host hemocytes was recorded during 2 days following envenomation by the parasitoid. The decreased hemocyte viability was detected 1, 2, and 24 h after the envenomation. Injecting of the crude venom (final protein concentration 3 μg/ml) into the G. mellonella larvae led to the reduced hemocyte adhesion. The larval envenomation caused a decrease in transmembrane potential of the hemocytes. These findings document the suppression of hemocytic immune effectors in the parasitized host larvae.  相似文献   
39.
Nbp35 and Cfd1 are prototypical members of the MRP/Nbp35 class of iron-sulfur (FeS) cluster scaffolds that function to assemble nascent FeS clusters for transfer to FeS-requiring enzymes. Both proteins contain a conserved NTPase domain that genetic studies have demonstrated is essential for their cluster assembly activity inside the cell. It was recently reported that these proteins possess no or very low nucleotide hydrolysis activity in vitro, and thus the role of the NTPase domain in cluster biogenesis has remained uncertain. We have reexamined the NTPase activity of Nbp35, Cfd1, and their complex. Using in vitro assays and site-directed mutagenesis, we demonstrate that the Nbp35 homodimer and the Nbp35-Cfd1 heterodimer are ATPases, whereas the Cfd1 homodimer exhibited no or very low ATPase activity. We ruled out the possibility that the observed ATP hydrolysis activity might result from a contaminating ATPase by showing that mutation of key active site residues reduced activity to background levels. Finally, we demonstrate that the fluorescent ATP analog 2′/3′-O-(N′-methylanthraniloyl)-ATP (mantATP) binds stoichiometrically to Nbp35 with a KD = 15.6 μm and that an Nbp35 mutant deficient in ATP hydrolysis activity also displays an increased KD for mantATP. Together, our results demonstrate that the cytosolic iron-sulfur cluster assembly scaffold is an ATPase and pave the way for interrogating the role of nucleotide hydrolysis in cluster biogenesis by this large family of cluster scaffolding proteins found across all domains of life.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号