首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1726篇
  免费   108篇
  国内免费   27篇
  2024年   1篇
  2023年   22篇
  2022年   28篇
  2021年   49篇
  2020年   49篇
  2019年   56篇
  2018年   52篇
  2017年   30篇
  2016年   30篇
  2015年   39篇
  2014年   58篇
  2013年   117篇
  2012年   59篇
  2011年   61篇
  2010年   55篇
  2009年   44篇
  2008年   71篇
  2007年   83篇
  2006年   84篇
  2005年   71篇
  2004年   77篇
  2003年   66篇
  2002年   90篇
  2001年   98篇
  2000年   81篇
  1999年   60篇
  1998年   57篇
  1997年   30篇
  1996年   32篇
  1995年   16篇
  1994年   19篇
  1993年   37篇
  1992年   18篇
  1991年   18篇
  1990年   6篇
  1989年   17篇
  1988年   20篇
  1987年   6篇
  1986年   10篇
  1985年   9篇
  1984年   9篇
  1983年   3篇
  1982年   11篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
排序方式: 共有1861条查询结果,搜索用时 31 毫秒
61.
《Current biology : CB》2019,29(12):1999-2008.e4
  1. Download : Download high-res image (588KB)
  2. Download : Download full-size image
  相似文献   
62.
63.
The peptide hormone somatostatin, as well as the somatostatin analog octreotide, induces rapid morphological changes in neuroendocrine cells. The effect can be detected in less than 2 min: retraction fibers are formed, cells round up and cell-cell contacts are broken. Somatostatin-dependent cell contraction is inhibited by Y-27632, indicating that this effect is dependent on Rho kinase. In BON1 cells, the somatostatin-induced inhibition of forskolin-induced secretion of chromogranin A is not blocked by Y-27632. It is therefore concluded that the inhibitory effect of somatostatin in forskolin-stimulated cells is not dependent on cell contraction.  相似文献   
64.
Tyrosine phosphorylation-dependence of caveolae-mediated endocytosis   总被引:2,自引:0,他引:2  
Caveolae are flask-shaped plasma membrane invaginations that mediate endocytosis and transcytosis of plasma macromolecules, such as albumin, insulin and low-density lipoprotein (LDL), as well as certain viruses, bacteria and bacterial toxins. Caveolae-mediated transcytosis of macromolecules is critical for maintaining vascular homeostasis by regulating the oncotic pressure gradient and tissue delivery of drugs, vitamins, lipids and ions. Entrapment of cargo within caveolae induces activation of signalling cascades leading to caveolae fission and internalization. Activation of Src tyrosine kinase is an early and essential step that triggers detachment of loaded caveolae from the plasma membrane. In this review, we examine how Src-mediated phosphorylation regulates caveolae-mediated transport by orchestrating the localization and activity of essential proteins of the endocytic machinery to regulate caveolae formation and fission.  相似文献   
65.
Juglone, a naphthoquinone isolated from many species of the Juglandaceae family, has been used in traditional Chinese medicine for centuries because of its antiviral, antibacterial, and antitumor activities. However, the toxicity of juglone has also been demonstrated. Here, we used porcine oocytes as a model to explore the effects of juglone on oocyte maturation and studied the impact of vitamin C (VC) administration on juglone exposure-induced meiosis defects. Exposure to juglone significantly restricted cumulus cell expansion and decreased the first polar body extrusion. In addition, juglone exposure disturbed spindle organization, actin assembly, and the distribution of mitochondria during oocyte meiosis, while the acetylation level of α-tubulin was also reduced. These defects were all ameliorated by VC administration. Our findings indicate that juglone exposure induced meiotic failure in porcine oocytes, while VC protected against these defects during porcine oocyte maturation by ameliorating the organization of the cytoskeleton and mitochondrial distribution.  相似文献   
66.
The small molecule SI113 is an inhibitor of the kinase activity of SGK1, a key biological regulator acting on the PI3K/mTOR signal transduction pathway. Several studies demonstrate that this compound is able to strongly restrain cancer growth in vitro and in vivo, alone or in associative antineoplastic treatments, being able to elicit an autophagic response, either cytotoxic or cytoprotective. To elucidate more exhaustively the molecular mechanisms targeted by SI113, we performed activity-based protein profiling (ABPP) proteomic analysis using a kinase enrichment procedure. This technique allowed the identification via mass spectrometry of novel targets of this compound, most of them involved in functions concerning cell motility and cytoskeletal architecture. Using a glioblastoma multiforme, hepatocarcinoma and colorectal carcinoma cell line, we recognized an inhibitory effect of SI113 on cell migration, invading, and epithelial-to-mesenchymal transition. In addition, these cancer cells, when exposed to this compound, showed a remarkable subversion of the cytoskeletal architecture characterized by F-actin destabilization, phospho-FAK delocalization, and tubulin depolimerization. These results were definitely concordant in attributing to SI113 a key role in hindering cancer cell malignancy and, due to its negligible in vivo toxicity, can sustain performing a Phase I clinical trial to employ this drug in associative cancer therapy.  相似文献   
67.
The NG2 chondroitin sulfate proteoglycan is a membrane-spanning molecule expressed by immature precursor cells in a variety of developing tissues. In tightly adherent cell lines with a flattened morphology, NG2 is organized on the cell surface in linear arrays that are highly co-localized with actin and myosin-containing stress fibers in the cytoskeleton. In contrast, microtubules and intermediate filaments in the cytoskeleton exhibit completely different patterns of organization, suggesting that NG2 may use microfilamentous stress fibers as a means of cytoskeletal anchorage. Consistent with this is the observation that cytochalasin D disrupts the organization of both stress fibers in the cytoskeleton and NG2 on the cell surface. Very similar linear cell surface arrays are also seen with three other cell surface molecules thought to interact with the actin cytoskeleton: the α5β1 integrin, the CD44 proteoglycan, and the L1 neuronal cell adhesion molecule. Since the cytoplasmic domains of these four molecules are dissimilar, it seems possible that cytoskeletal anchorage in each case may occur via different mechanisms. One indication of such differences can be seen in colchicine-treated cells which have lost their flattened morphology but still retain long actin-positive tendrils as remnants of the actin cytoskeleton. NG2 and α5β1 are associated with these tendrils while CD44 and L1 are not, suggesting that at least two subclasses of cell surface molecules exist which can interact with different subdomains of the actin cytoskeleton. © 1996 Wiley-Liss, Inc.  相似文献   
68.
69.
Culturing of chick embryo fibroblasts in the presence of colchicine or cytochalasin B with and without concanavalin A (Con A) demonstrated that colchicine induces greater neosynthesis of endocellular type I collagen, whereas cytochalasin B boosts secretion. The effects are modified by the addition of Con A, which increases α2more than a1 chain production.3H-thymidine incorporation is unaffected by cytochalasin B, but stimulated by colchicine. Con A neutralizes the stimulatory action of colchicine. It would therefore seem that Con A exerts transmembrane control of effects induced by colchicine and cytochalasin B by binding to cell surface receptors and so triggering rearrangement of the cytoskeleton.  相似文献   
70.
Summary— The amoebae of the myxomycete Physarum polycephalum are of interest in order to analyze the morphogenesis of the microtubule and microfilament cytoskeleton during cell cycle and flagellation. The amoebal interphase microtubule cytoskeleton consists of 2 distinct levels of organization, which correspond to different physiological roles. The first level is composed of the 2 kinetosomes or centrioles and their associated structures. The anterior and posterior kinetosomes forming the anterior and posterior flagella are morphologically distinguishable. Each centriole plays a role in the morphogenesis of its associated satellites and specific microtubule arrays. The 2 distinct centrioles correspond to the 2 successive maturation stages of the pro-centrioles which are built during prophase. The second level of organization consists of a prominent microtubule organizing center (mtoc 1) to which the anterior centriole is attached at least during interphase. This mtoc plays a role in the formation of the mitotic pole. These observations based on ultrastructural and physiological analyses of the amoebal cystoskeleton are now being extended to the biochemical level. The complex formed by the 2 centrioles and the mtoc 1 has been purified without modifying the microtubule-nucleating activity of the mtoc 1. Several microtubule-associated proteins have been characterized by their ability to bind taxol-stabilized microtubules. Their functions (e.g., microtubule assembly, protection of microtubules against dilution or cold treatment, phosphorylating and ATPase activities) are under investigation. These biochemical approaches could allow in vitro analysis of the morphogenesis of the amoebal microtubule cytoskeleton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号