首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1726篇
  免费   107篇
  国内免费   28篇
  2024年   1篇
  2023年   22篇
  2022年   28篇
  2021年   49篇
  2020年   49篇
  2019年   56篇
  2018年   52篇
  2017年   30篇
  2016年   30篇
  2015年   39篇
  2014年   58篇
  2013年   117篇
  2012年   59篇
  2011年   61篇
  2010年   55篇
  2009年   44篇
  2008年   71篇
  2007年   83篇
  2006年   84篇
  2005年   71篇
  2004年   77篇
  2003年   66篇
  2002年   90篇
  2001年   98篇
  2000年   81篇
  1999年   60篇
  1998年   57篇
  1997年   30篇
  1996年   32篇
  1995年   16篇
  1994年   19篇
  1993年   37篇
  1992年   18篇
  1991年   18篇
  1990年   6篇
  1989年   17篇
  1988年   20篇
  1987年   6篇
  1986年   10篇
  1985年   9篇
  1984年   9篇
  1983年   3篇
  1982年   11篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
排序方式: 共有1861条查询结果,搜索用时 31 毫秒
141.
The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs.  相似文献   
142.
Pregabalin is a lipophilic amino acid derivative of γ‐amino butyric acid that displays anticonvulsant and analgesic activities against neuropathic pain. Although a role for glial cells as an important player in pain control and also as a new target for pain medicine has been suggested, the effect of pregabalin on glial cells has not been elucidated. In the present study, we have investigated the action of pregabalin on the glial cell proteome. To identify immediate early protein targets of pregabalin in glial cells, a differential proteomics approach in C6 rat glioma cells treated with pregabalin was used. Seven proteins that sensitively reacted to pregabalin treatment were identified using two‐dimensional gel electrophoresis and MALDI–TOF‐MS (matrix‐assisted laser‐desorption ionization–time‐of‐flight MS). The calcium‐ion‐binding chaperone, calreticulin, and the oxidative response protein, DJ‐1, were up‐regulated after pregabalin treatment. Hsp (heat‐shock protein)‐90‐β, cytoskeleton protein actin and myosin also showed quantitative expression profile differences. Functionally relevant to the proteome result, immediate actin depolymerization was observed after treatment with pregabalin. These results suggest a previously undefined role of pregabalin in the regulation of chaperone activity and cytoskeleton remodelling in glial cells.  相似文献   
143.
Cell motility is controlled by the dynamic cytoskeleton and its related proteins, such as members of the ezrin/radixin/moesin (ERM) family, which act as signalling molecules inducing cytoskeleton remodelling. Although ERM proteins have been identified as important factors in various malignancies, functional redundancy between these proteins has hindered the dissection of their individual contribution. The aim of the present study was to analyse the functional role of moesin in pancreatic malignancies. Cancer cells of different malignant lesions of human and transgenic mice pancreata were evaluated by immunohistochemistry. For functional analysis, cell growth, adhesion and invasion assays were carried out after transient and stable knock‐down of moesin expression in pancreatic cancer cells. In vivo tumourigenicity was determined using orthotopic and metastatic mouse tumour models. We now show that moesin knock‐down increases migration, invasion and metastasis and influences extracellular matrix organization of pancreatic cancer. Moesin‐regulated migratory activities of pancreatic cancer cells were in part promoted through cellular translocation of β‐catenin, and re‐distribution and organization of the cytoskeleton. Analysis of human and different transgenic mouse pancreatic cancers demonstrated that moesin is a phenotypic marker for anaplastic carcinoma, suggesting that this ERM protein plays a specific role in pancreatic carcinogenesis.  相似文献   
144.
Carboxymethylation and phosphorylation of protein phosphatase 2A (PP2A) catalytic C subunit are evolutionary conserved mechanisms that critically control PP2A holoenzyme assembly and substrate specificity. Down-regulation of PP2A methylation and PP2A enzymes containing the B alpha regulatory subunit occur in Alzheimer's disease. In this study, we show that expressed wild-type and methylation- (L309 Delta) and phosphorylation- (T304D, T304A, Y307F, and Y307E) site mutants of PP2A C subunit differentially bind to B, B', and B'-type regulatory subunits in NIH 3T3 fibroblasts and neuro-2a (N2a) neuroblastoma cells. They also display distinct binding affinity for microtubules (MTs). Relative to controls, expression of the wild-type, T304A and Y307F C subunits in N2a cells promotes the accumulation of acetylated and detyrosinated MTs. However, expression of the Y307E, L309 Delta, and T304D mutants, which are impaired in their ability to associate with the B alpha subunit, induces their loss. Silencing of B alpha subunit in N2a and NIH 3T3 cells is sufficient to induce a similar breakdown of acetylated and detyrosinated MTs. It also confers increased sensitivity to nocodazole-induced MT depolymerization. Our findings suggest that changes in intracellular PP2A subunit composition can modulate MT dynamics. They support the hypothesis that reduced amounts of neuronal B alpha-containing PP2A heterotrimers contribute to MT destabilization in Alzheimer's disease.  相似文献   
145.
The first calpain protease was discovered over 40 years ago now, yet despite the vast amount of literature that has subsequently emerged detailing their involvement in the pathophysiology of a variety of human diseases, it is only in the last decade that calpain-mediated actions along the secretory pathway have begun to emerge. However, the number of secretory pathway substrates identified and their diversity of function continues to grow. This review summarizes our current knowledge of calpain-mediated mechanisms of action that are pertinent to synaptic vesicle assembly and budding, cytoskeletal organization, endosomal recycling, and exocytotic membrane fusion.  相似文献   
146.
The Rho GTPases are implicated in almost every fundamental cellular process. They act as molecular switches that cycle between an active GTP-bound and an inactive GDP-bound state. Their slow intrinsic GTPase activity is greatly enhanced by RhoGAPs (Rho GTPase-activating proteins), thus causing their inactivation. To date, more than 70 RhoGAPs have been identified in eukaryotes, ranging from yeast to human, and based on sequence homology of their RhoGAP domain, we have grouped them into subfamilies. In the present Review, we discuss their regulation, biological functions and implication in human diseases.  相似文献   
147.
细菌脂多糖(LPS)可诱导宿主对LPS的耐受,但对细菌脂蛋白(BLP)是否存在交叉耐受,目前报道不一。采用人单核细胞株(THP-1),建立小剂量LPS诱导THP-1对LPS耐受的细胞模型;观察细胞肌动蛋白骨架、炎症因子TNF-α、IL-1β、IL-6的浓度及NF-κB的DNA结合活力的变化情况;探讨BLP交叉耐受及细胞骨架在其中的作用。结果显示,THP-1细胞经小剂量(10ng/ml)LPS、大剂量(100ng/ml)LPS或BLP刺激后,细胞形态严重变形,肌动蛋白重组,细胞周边肌动蛋白丝带消失,出现明显的肌动蛋白收缩团块及伪足,细胞核内NF-κB的DNA结合活性显著升高,培养上清液中炎症因子(TNF-α、IL-1β及IL-6)的释放显著增加;而小剂量LPS预刺激12h后,再用大剂量的LPS或BLP刺激6h,上述指标明显改善;采用细胞骨架肌动蛋白聚集破坏剂鬼笔环肽预处理后的THP-1细胞,可取消由小剂量LPS诱导的自身耐受及对BLP的交叉耐受;可见,细菌LPS、BLP(100ng/ml)可诱导THP-1细胞肌动蛋白骨架的改变,激活NF-κB信号通路,诱导炎性细胞因子TNF-α、IL-1、IL-6过度释放,激活宿主炎症细胞的炎症反应;而小剂量LPS预刺激后可诱导出THP-1细胞对LPS的自身耐受和对BLP的交叉耐受;细胞骨架肌动蛋白参与了小剂量LPS诱导THP-1细胞对LPS自身耐受和对BLP交叉耐受的形成。  相似文献   
148.
Thyroid hormones (3,5,3′-triiodo-l-thyronine, T3; 3,5,3′,5′-l-tetraiodothyronine, T4; TH) play crucial roles in the growth and differentiation of the central nervous system. In this study, we investigated the actions of TH on proliferation, viability, cell morphology, in vitro phosphorylation of glial fibrillary acidic protein (GFAP) and actin reorganization in C6 glioma cells. We first observe that long-term exposure to TH stimulates cell proliferation without induce cell death. We also demonstrate that after 3, 6, 12, 18, and 24 h treatment with TH, C6 cells and cortical astrocytes show a process-bearing shape. Furthermore, immunocytochemistry with anti-actin and anti-GFAP antibodies reveals that TH induces reorganization of actin and GFAP cytoskeleton. We also observe an increased in vitro 32P incorporation into GFAP recovered into the high-salt Triton insoluble cytoskeletal fraction after 3 and 24 h exposure to 5×10−8 and 10−6 M T3, and only after 24 h exposure to 10−9 M T4. These results show a T3 action on the phosphorylating system associated to GFAP and suggest a T3-independent effect of T4 on this cytoskeletal protein. In addition, C6 cells and astrocytes treated with lysophosphatidic acid, an upstream activator of the RhoA GTPase pathway, totally prevented the morphological alterations induced by TH, indicating that this effect could be mediated by the RhoA signaling pathway. Considering that IF network can be regulated by phosphorylation leading to reorganization of IF filamentous structure and that alterations of the microfilament organization may have important implications in glial functions, the effects of TH on glial cell cytoskeleton could be implicated in essential neural events such as brain development.  相似文献   
149.
We have identified a novel protein, protein phosphatase 1 F-actin cytoskeleton targeting subunit (phostensin). This protein is encoded by KIAA1949 and was found to associate with protein phosphatase 1 (PP1) in the yeast two-hybrid assay, co-immunoprecipitation, and GST pull-down assay. Northern blot analysis revealed that phostensin mRNA was predominantly distributed in leukocytes and spleen, and phostensin protein was present in crude extracts of human peripheral leukocytes. Immunofluorescence microscopic analysis revealed that the phostensin/PP1 complex was conspicuously localized with the actin cytoskeleton at the cell periphery in Madin-Darby canine kidney (MDCK) epithelial cells. Taken together, our data shows that phostensin targets PP1 to F-actin cytoskeleton. The phostensin/PP1 complex may play a vital role in modulation of actin rearrangements.  相似文献   
150.
The spatial and temporal scales of cardiac organogenesis and pathogenesis make engineering of artificial heart tissue a daunting challenge. The temporal scales range from nanosecond conformational changes responsible for ion channel opening to fibrillation which occurs over seconds and can lead to death. Spatial scales range from nanometre pore sizes in membrane channels and gap junctions to the metre length scale of the whole cardiovascular system in a living patient. Synchrony over these scales requires a hierarchy of control mechanisms that are governed by a single common principle: integration of structure and function. To ensure that the function of ion channels and contraction of muscle cells lead to changes in heart chamber volume, an elegant choreography of metabolic, electrical and mechanical events are executed by protein networks composed of extracellular matrix, transmembrane integrin receptors and cytoskeleton which are functionally connected across all size scales. These structural control networks are mechanoresponsive, and they process mechanical and chemical signals in a massively parallel fashion, while also serving as a bidirectional circuit for information flow. This review explores how these hierarchical structural networks regulate the form and function of living cells and tissues, as well as how microfabrication techniques can be used to probe this structural control mechanism that maintains metabolic supply, electrical activation and mechanical pumping of heart muscle. Through this process, we delineate various design principles that may be useful for engineering artificial heart tissue in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号