首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1726篇
  免费   108篇
  国内免费   27篇
  2024年   1篇
  2023年   22篇
  2022年   28篇
  2021年   49篇
  2020年   49篇
  2019年   56篇
  2018年   52篇
  2017年   30篇
  2016年   30篇
  2015年   39篇
  2014年   58篇
  2013年   117篇
  2012年   59篇
  2011年   61篇
  2010年   55篇
  2009年   44篇
  2008年   71篇
  2007年   83篇
  2006年   84篇
  2005年   71篇
  2004年   77篇
  2003年   66篇
  2002年   90篇
  2001年   98篇
  2000年   81篇
  1999年   60篇
  1998年   57篇
  1997年   30篇
  1996年   32篇
  1995年   16篇
  1994年   19篇
  1993年   37篇
  1992年   18篇
  1991年   18篇
  1990年   6篇
  1989年   17篇
  1988年   20篇
  1987年   6篇
  1986年   10篇
  1985年   9篇
  1984年   9篇
  1983年   3篇
  1982年   11篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
排序方式: 共有1861条查询结果,搜索用时 15 毫秒
101.
Summary. Caldesmon immunoanalogues were detected in Amoeba proteus cell homogenates by the Western blot technique. Three immunoreactive bands were recognized by polyclonal antibodies against the whole molecule of chicken gizzard caldesmon as well as by a monoclonal antibody against its C-terminal domain: one major and two minor bands corresponding to proteins with apparent molecular masses of 150, 69, and 60 kDa. The presence of caldesmon-like protein(s) in amoebae was revealed as well in single cells after their fixation, staining with the same antibodies, and recording their total fluorescence in a confocal laser scanning microscope. Proteins recognized by the antibodies bind to filamentous actin. This was established by a cosedimentation assay in cell homogenates and by colocalization of the caldesmon-related immunofluorescence with the fluorescence of filamentous actin stained with rhodamine-labelled phalloidin, demonstrated in optical sections of single cells in a confocal microscope. Caldesmon is colocalized with filamentous actin in the withdrawn cell regions where the cortical actomyosin network contracts and actin is depolymerized, in the frontal zone where actin is polymerized again and the cortical cytoskeleton is reconstructed, inside the nucleus and in the perinuclear cytoskeleton, and probably at the cell-to-substratum adhesion sites. The regulatory role of caldesmon in these functionally different regions of locomoting amoebae is discussed.Correspondence and reprints: Department of Cell Biology, Nencki Institute of Experimental Biology, ulica Pasteura 3, 02-093 Warsaw, Poland.Received October 7, 2002; accepted December 2, 2002; published online August 26, 2003  相似文献   
102.
The mechanical state of the heart feeds back to modify cardiac rate and rhythm. Mechanical stretch of myocardial tissue causes immediate and chronic responses that lead to the common end point of arrhythmia. This review provides a brief summary of the author's personal choice of contributions that she considers have fostered our understanding of the role of mechano-electric feedback in arrhythmogenesis.

Acute mechanical stretch reversibly depolarises the cell membrane and shortens the action potential duration. These electrophysiological changes are related to the activation of mechano-sensitive ion channels. Several different ion channels are involved in the sensing of stretch, among them K+-selective, Cl-selective, non-selective, and ATP-sensitive K+ channels. Sodium and Ca2+ entering the cells via non-selective ion channels are thought to contribute to the genesis of stretch-induced arrhythmia. Mechano-sensitive channels have been cloned from non-vertebrate and vertebrate species.

Chronic stress on the heart activates gene expression in cardiomyocytes and non-myocytes. The signal transduction involves atrial natriuretic peptides and growth factors that initiate remodelling processes leading to hypertrophy which in turn may contribute to the electrical instability of the heart by increasing the responsiveness of mechano-sensitive channels. Selective block of these channels could provide some new form of treatment of mechanically induced arrhythmias, although at present there are no drugs available with sufficient selectivity. Detailed understanding of how mechanical strain on myocardial cells is translated into channel activation will allow to identify new targets for putative antiarrhythmic drugs.  相似文献   

103.
104.
The cortex of ciliates. dinoflagellates, and euglenoids comprises a unique structure called the epiplasm, implicated in pattern-forming processes of the cell cortex and in maintaining cell shape. Articulins, a novel class of cytoskeletal proteins, are major constituents of the epiplasm in the flagellate Euglena gracilis and the ciliate Pseudomicrothorax dubius. The hallmark of articulins is a core domain of repetitive motifs of alternating valine and proline residues, the VPV-motif. The VPV-motif repeats are 12 residues long. Positively and negatively charged residues segregate in register with valine and proline positions. The VPV-motif is unique to articulins. The terminal domains flanking the core are generally hydrophobic and contain a series of hexa- or heptapeptide repeats rich in glycine and hydrophobic residues. Using molecular and immunological tools we show that articulins are also present in the dinoflagellate Amphidinium carterae and the ciliates Paramecium tetraurelia and Paramecium caudatum, Tetrahymena pyriformis, and Euplotes aediculatus. Our analysis further shows that epiplasmins, a group of epiplasmic proteins first characterized in Paramecium, are also present in all these species. Moreover, we present evidence that epiplasmins and articulins represent two distinct classes of cytoskeletal proteins.  相似文献   
105.
A novel method for the covalent attachment of erythrocytes to glass microscope coverslips that can be used to image intact cells and the cytoplasmic side of the cell membrane with either solid or liquid mode atomic force microscopy (AFM) is described. The strong binding of cells to the glass surface is achieved by the interaction of cell membrane carbohydrates to lectin, which is bound to N-5-azido-2-nitrobenzoyloxysuccinimide (ANBNOS)-coated coverslips (1). The effectiveness of this method is compared with the other commonly used methods of immobilizing intact erythrocytes on glass coverslips for AFM observations. Experimental conditions of AFM imaging of biologic tissue are discussed, and typical topographies of the extracellular and the cytoplasmic surfaces of the plasma membrane in the dry state and in the liquid state are presented. Comparison of the spectrin network of cell age-separated erythrocytes has demonstrated significant loss in the network order in older erythrocytes. The changes are quantitatively described using the pixel height histogram and window size grain analysis.  相似文献   
106.
We have determined the temporal and spatial relationship between cell polarization and alpha-actinin localization by analysing the redistribution of alpha-actinin and F-actin in spherical PMNs developing polarity and in polarized cells reversing polarity following localized stimulation with chemotactic peptide using micropipettes. Initially spherical PMNs develop a one-sided accumulation of alpha-actinin before lamellipodia enriched in alpha-actinin are formed. In polarized cells, alpha-actinin is concentrated at the leading front. When polarity is reversed, alpha-actinin redistribution to the uropod precedes reversal of morphological polarity and formation of new lamellipodia at the uropod. Later, lamellipodia enriched in F-actin and alpha-actinin develop at the former uropod to form a new front. The data document that redistribution of alpha-actinin is a very early event in the development of polarity, which precedes formation of lamellipodia.  相似文献   
107.
Strong static magnetic fields on the order of 10 T have a diamagnetic force on cell components and generate a clear alignment of a smooth muscle cell assembly, parallel to the direction of the magnetic fields within an exposure period of 3 days. This work shows the effects of diamagnetic torque forces on cell component motion. Linearly polarized light was utilized to detect the displacement of intracellular macromolecules. The polarized light passed through a mass of cells in a magnetic field, and transmission of the light increased and reached a plateau 2 h after the beginning of magnetic field exposure at 14 T. However, no distinct change was observed in transmission of the light under zero magnetic field exposure. The change in polarized light intensity through the lamellar cell assembly under magnetic fields corresponds to behavioral changes in cell components. It was speculated that intracellular macromolecules rotated and showed a displacement due to diamagnetic torque forces during 2-3 h of magnetic field exposure at 14 T.  相似文献   
108.
Plant immunity against the majority of the microbial pathogens is conveyed by a phenomenon known as non-host resistance (NHR). This defence mechanism affords durable protection to plant species against given species of phytopathogens. We investigated the genetic basis of NHR in Arabidopsis against the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt). Both primary and appressorial germ tubes were produced from individual Bgt conidia on the surface of the Arabidopsis leaves. Attempted infection occasionally resulted in successful penetration, which led to the development of an abnormal unilateral haustorium. Inoculation of a series of Arabidopsis defence-related mutants with Bgt resulted in the attenuation of reactive oxygen intermediate (ROI) production and salicylic acid (SA)-dependent defence gene expression in eds1, pad4 and nahG plants, which are known to be defective in some aspects of host resistance. Furthermore, Bgt often developed bilateral haustoria in the mutant Arabidopsis lines that closely resembled those formed in wheat. A similar decrease in NHR was observed following treatment of the wild-type Arabidopsis plants with cytochalasin E, an inhibitor of actin microfilament polymerisation. In eds1 mutants, inhibition of actin polymerisation severely compromised NHR in Arabidopsis against Bgt. This permitted completion of the Bgt infection cycle on these plants. Therefore, actin cytoskeletal function and EDS1 activity, in combination, are major contributors to NHR in Arabidopsis against wheat powdery mildew.  相似文献   
109.
The trafficking of intracellular membranes requires the coordination of membrane-cytoskeletal interactions. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions. We have previously identified a rho protein, rhoD, which is localized to the plasma membrane and early endosomes. When overexpressed, rhoD alters the actin cytoskeleton and plays an important role in endosome organization. We found that a rhoD mutant exerts its effect on early endosome dynamics through an inhibition in organelle motility. In these studies, the effect of rhoD on endosome dynamics was evaluated in the presence of a constitutively active, GTPase-deficient mutant of rab5, rab5Q79L. As rab5Q79L itself stimulates endosome motility, rhoD might counteract this stimulation, without itself exerting any effect in the absence of rab5 activation. We have now addressed this issue by investigating the effect of rhoD in the absence of co-expressed rab5. We find that rhoDG26V alone alters vesicular dynamics. Vesicular movement, in particular the endocytic/recycling circuit, is altered during processes such as cell motility. Due to the participation of vesicular motility and cytoskeletal rearrangements in cell movement and the involvement of rhoD in both, we have addressed the role of rhoD in this process and have found that rhoDG26V inhibits endothelial cell motility.  相似文献   
110.
We tested the hypothesis that a pressure difference can cause blebbing associated with uncoupling of the plasma membrane from the cortical actin, a phenomenon found earlier in locomoting blebbing Walker carcinosarcoma cells. Untreated, initially spherical Walker carcinosarcoma cells were exposed to suction pressure by partial aspiration into micropipettes. The suction pressure required to induce blebbing was in the range of 0.9-3 cm H2O, i.e., somewhat lower than the increase in intracellular pressure measured before formation of protrusions in Amoeba proteus (Yanai et al., Cell Motil. Cytoskeleton 33, 22-29, 1996). The response was temperature-dependent, blebbing occurring more frequently at 37 degrees C than at room temperature. Blebbing was associated with formation of cytoplasmic actin layers, restriction rings and/or of gaps in the plasma membrane-associated cortical actin. The results support the view that blebbing associated with uncoupling of cortical actin and plasma membrane as observed in locomoting cells can be caused by a pressure gradient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号