首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5198篇
  免费   210篇
  国内免费   288篇
  2023年   38篇
  2022年   44篇
  2021年   72篇
  2020年   94篇
  2019年   123篇
  2018年   77篇
  2017年   102篇
  2016年   96篇
  2015年   96篇
  2014年   183篇
  2013年   255篇
  2012年   139篇
  2011年   236篇
  2010年   147篇
  2009年   200篇
  2008年   235篇
  2007年   222篇
  2006年   229篇
  2005年   200篇
  2004年   164篇
  2003年   159篇
  2002年   162篇
  2001年   124篇
  2000年   147篇
  1999年   125篇
  1998年   121篇
  1997年   106篇
  1996年   114篇
  1995年   98篇
  1994年   111篇
  1993年   118篇
  1992年   106篇
  1991年   105篇
  1990年   105篇
  1989年   80篇
  1988年   77篇
  1987年   70篇
  1986年   68篇
  1985年   88篇
  1984年   102篇
  1983年   94篇
  1982年   104篇
  1981年   92篇
  1980年   71篇
  1979年   56篇
  1978年   27篇
  1977年   26篇
  1976年   29篇
  1975年   16篇
  1974年   18篇
排序方式: 共有5696条查询结果,搜索用时 234 毫秒
21.
Silver nanoparticles (AgNPs) were biosynthesized using fungal extract of Trametes trogii, a white rot basidiomycete involved in wood decay worldwide, which produces several ligninolytic enzymes. According to previous studies using fungi, enzymes are involved in nanoparticles synthesis, through the so-called green synthesis process, acting as reducing and capping agents. Understanding which factors could modify nanoparticles’ shape, size and production efficiency is relevant. The results showed that under the protocol used in this work, this strain of Trametes trogii is able to synthesize silver nanoparticles with the addition of silver nitrate (AgNO3) to the fungal extract obtained with an optimal incubation time of 72 h and pH 13, using NaOH to adjust pH. The progress of the reaction was monitored using UV–visible spectroscopy and synthesized AgNPs was characterized by scanning electron microscope (SEM), through in-lens and QBDS detectors, and energy-dispersive X-ray spectroscopy (EDX). Additionally, SPR absorption was modeled using Mie theory and simple nanoparticles and core-shell configurations were studied, to understand the morphology and environment of the nanoparticles. This protocol represents a simple and cheap synthesis in the absence of toxic reagents and under an environmentally friendly condition.  相似文献   
22.
Abstract Energy-coupling sites in the electron transport chain of the obligately fermentative aerotolerant bacterium Zymomonas mobilis were examined. The H+ /O stoichiometry of the electron transport chain in intact bacteria oxidizing ethanol was close to 3.3. Cytoplasmic membrane vesicles coupled NADH oxidation to ATP synthesis. With ascorbate/phenazine methosulfate they showed oxygen uptake which was sensitive to antimycin A, but no significant ATP synthesis could be detected. Cells with a defective coupling site I, prepared by cultivation on a sulfate-deficient medium, showed a decreased rotenone sensitivity of respiration, and they lacked almost all the respiration-driven proton translocation and ATP synthesis. We conclude that, despite the reported composition of the electron transport chain, only energy coupling site 1 was functional in Z. mobilis .  相似文献   
23.
Adventitious bud formation on Sitka spruce [ Picca sitchensis (Bong.) Carr.] needle explants was strongly dependent upon the rigidity of the culture medium. In general, of organogenesis was greatest on weak gels and poorest on more rigid gels resulting from increased medium pH or agar strength. There was a significant interaction between agar strength and pH, with the optimum pH for organogenesis declining with increasing agar strength. Poor organogenesis at high agar concentrations was not due to toxic impurities since increased adventitious bud production could be stimulated by decreasing the medium pH whilst maintaining a high agar strength and an agar washing treatment had no significant effect. Although high levels of organogenesis could be sustained on weak gels the resultant adventitious shoots often showed severe vitrification. The frequency of shoots showing vitrification could be reduced by growing the tissues on harder media but this resulted in reduced shoot elongation. Vitrification of needle tissues did not stimulate the formation of adventitious buds in the absence of cytokinins.  相似文献   
24.
Current agronomic cultivars of white lupin (Lupinus albus) are intolerant of calcareous or limed soils. In these soils, high pH, bicarbonate (HCO3?), and calcium (Ca) concentrations are the major chemical stresses to the root system. To determine the responses of the root system to these factors, evaluate root architecture, and compare genotypes for tolerance, a series of liquid culture experiments was completed using root chambers that allowed the study of the root system in two dimensions. Each stress condition caused changes in different parts of the root system and there was no generalised stress response. HCO3? (5 mM) had the greatest effect on cultivars intolerant of calcareous soil; it decreased the dry weight of the shoot and caused the highest percentage of tap root deaths. HCO3? also discriminated between short (determinate) and long (indeterminate) roots, as it decreased the number and density of the determinate roots only. Calcium (3 mM) affected all parts of the root system. The tap root was shortened and showed an increased tortuousness in its path compared with 1 mM Ca, although no plants suffered tap root death. The numbers and densities of the two lateral root forms were also decreased, as were the lengths of the indeterminate roots. Stress from alkaline pH (7.5) media caused a lower number and density of determinate lateral roots to be produced than at pH 6.5. The experiments demonstrated that each culture condition elicited a definable stress response. Stress conditions altered the root architecture of genotypes reported to be tolerant of calcareous soil less than in intolerant genotypes. Although soil is more complex than liquid culture, it is possible that in a calcareous or limed soil each stress condition examined may affect the overall stress of the plant, and increased tolerance may result from tolerance to a single stress.  相似文献   
25.
The sucrose content of acid lime [ Citrus aurantifolia (Christm.) Swing.] juice tissue was measured at time 0 and at various times following incubation at 15.5, 26.6 and 37.7°C. The decline in sucrose content in fruit stored at 15.5°C paralleled the expected values for a sucrose solution at pH 2.1. At higher temperatures, the in vivo sucrose content decreased at significantly lower rates than the expected values. In fruit stored at 26.6 and 37.7°C, the vacuolar pH increased 0.11 and 0.23 units, respectively. When sucrose hydrolysis was recalculated at the increased vacuolar pH of juice cells stored at 26.6 and 37.7°C, the calculated values were similar to the measured values obtained in vivo. It is concluded that within the limits of the experimental conditions, the rates of sucrose acid hydrolysis are regulated by changes in the vacuolar H+ concentration.  相似文献   
26.
This paper deals with the complex issue of reversing long‐term improvements of fertility in soils derived from heathlands and acidic grasslands using sulfur‐based amendments. The experiment was conducted on a former heathland and acid grassland in the U.K. that was heavily fertilized and limed with rock phosphate, chalk, and marl. The experimental work had three aims. First, to determine whether sulfurous soil amendments are able to lower pH to a level suitable for heathland and acidic grassland re‐creation (approximately 3 pH units). Second, to determine what effect the soil amendments have on the available pool of some basic cations and some potentially toxic acidic cations that may affect the plant community. Third, to determine whether the addition of Fe to the soil system would sequester PO4? ions that might be liberated from rock phosphate by the experimental treatments. The application of S0 and Fe(II)SO4? to the soil was able to reduce pH. However, only the highest S0 treatment (2,000 kg/ha S) lowered pH sufficiently for heathland restoration purposes but effectively so. Where pH was lowered, basic cations were lost from the exchangeable pool and replaced by acidic cations. Where Fe was added to the soil, there was no evidence of PO4? sequestration from soil test data (Olsen P), but sequestration was apparent because of lower foliar P in the grass sward. The ability of the forb Rumex acetosella to apparently detoxify Al3+, prevalent in acidified soils, appeared to give it a competitive advantage over other less tolerant species. We would anticipate further changes in plant community structure through time, driven by Al3+ toxicity, leading to the competitive exclusion of less tolerant species. This, we suggest, is a key abiotic driver in the restoration of biotic (acidic plant) communities.  相似文献   
27.
The phosphate metabolism of Platymonas subcordiformis was investigated by 31P-NMR spectroscopy with special attention on the effect of external pH. Glycolyzing cells and cells energized by respiration or photosynthesis gave spectra dependent upon their metabolic state. The transition from deenergized to energized states is accompanied by a shift of cytoplasmic pH from 7.1–7.4, an increase of ATP level and-in well energized cells-the appearance of a new signal tentatively assigned to phosphoarginine.The spectra remain stable over a wide range of external pH. Cytoplasmic pH is well regulated in respiring cells for external pH in the range 5.3–12.3. The typical 0.4 units difference of internal pH in energized as compared to deenergized cells is not affected by external pH in the range 6–12. The intensity of a signal attributed to PEP is markedly increased at high external pH. pH regulation is less efficient below external pH of 6 in deenergized cells. Below pH 3.8 oxidative phosphorylation ceases. Upon raising cytoplasmic pH to 7.4 in deenergized cells polyphosphate chains start to disintegrate.Abbreviations PEP Phosphoenolpyruyate - P i inorganic phosphate - PP i inorganic pyrophosphate - poly P polyphosphates - PP-1, PP-2, PP-3 terminal, second, and third phosphate residue of polyphosphates - PP-4 core phosphate residues of polyphosphates - pH i , pH o internal (cytoplasmic) and external pH - NTP/NDP nucleotide triphosphate/-diphosphate - S/N signal to noise ratio  相似文献   
28.
Brain metabolism and intracellular pH were studied during and after episodes of ischaemia and hypoxia-ischaemia in lambs anaesthetised with sodium pentobarbitone. 31P and 1H magnetic resonance spectroscopy methods were used to monitor brain pHi and brain concentrations of Pi, phosphocreatine (PCr), beta--nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of cerebral blood flow and cerebral oxygen and glucose consumption. Cerebral ischaemia sufficient to reduce oxygen delivery to 75% of control values was associated with a fall in brain pHi and increase in brain Pi. Progressively severe hypoxia-ischaemia was associated with a progressive fall in brain pHi, PCr, and beta NTP and increase in brain Pi. In two animals the increase in brain lactate during hypoxia-ischaemia measured by 1H nuclear magnetic resonance (NMR) could be quantitatively accounted for by the increased net uptake of glucose by the brain in relation to oxygen, but was insufficient to account for the concomitant acidosis according to previous estimates of brain buffering capacity. In four animals brain pHi, PCr, Pi, and beta NTP had returned to normal 1 h after the hypoxic-ischaemic episode. In one animal brain pHi had reverted to normal at a time when 1H NMR indicated persistent elevation of brain lactate.  相似文献   
29.
Eva Johannes  Hubert Felle 《Planta》1987,172(1):53-59
By means of pH-sensitive microelectrodes, cytoplasmic pH has been monitored continuously during amino-acid transport across the plasmalemma of Riccia fluitans rhizoid cells under various experimental conditions. (i) Contrary to the general assumption that import of amino acids (or hexoses) together with protons should lead to cytoplasmic acidification, an alkalinization of 0.1–0.3 pHc units was found for all amino acids tested. Similar alkalinizations were recorded in the presence of hexoses and methylamine. No alkalinization occurred when the substrates were added in the depolarized state or in the presence of cyanide, where the electrogenic H+-pump is inhibited. (ii) After acidification of the cytoplasm by means of various concentrations of acetic acid, amino-acid transport is massively altered, although the protonmotive force remained essentially constant. It is suggested that H+-cotransport is energetically interconnected with the proton-export pump which is stimulated by the amino-acid-induced depolarization, thus causing proton depletion of the cytoplasm. It is concluded that, in order to investigate H+-dependent cotransport processes, the cytoplasmic pH must be measured and be under continuous experimental control; secondly, neither pH nor the protonmotive force across a membrane are reliable quantities for analysing a proton-dependent process.Abbreviations 3-OMG 3-oxymethylglucose - pHc cytoplasmic pH - m electrical potential difference across the respective membrane, i.e. membrane potential - H+/F (=pmf) electrochemical proton gradient  相似文献   
30.
Growth of 2-month-old nonnodulatedHippophaë rhamnoides seedlings supplied with combined N was compared with that of nodulated seedlings grown on zero N. Plant growth was significantly better with combined N than with N2 fixation and, although not statistically significant for individual harvests, tended to be highest in the presence of NH 4 + , a mixture of NH 4 + and NO 3 ? producing the highest yields. Growth was severely reduced when solely dependent on N2 fixation and, unlike the combined-N plants, shoot to root ratios had only slightly increased after an initial decrease. An apparently insufficient nodule mass (nodule weight ratio <5 per cent) during the greater part of the experimental period is suggested as the main cause of the growth reduction in N2-fixing plants. Thein vivo nitrate reductase activity (NRA) of NO 3 ? dependent plants was almost entirely located in the roots. However, when grown with a combination of NO 3 ? and NH 4 + , root NRA was decreased by approximately 85 per cent.H. rhamnoides demonstrated in the mixed supply a strong preference for uptake of N as NH 4 + , NO 3 ? contributing only for approximately 20 per cent to the total N assimilation. Specific rates of N acquisition and ion uptake were generally highest in NO 3 ? +NH 4 + plants. The generation of organic anions per unit total plant dry weight was approximately 40 per cent less in the NH 4 + plants than in the NO 3 ? plants. Measured extrusions of H+ or OH? (HCO 3 ? ) were generally in good agreement with calculated values on the basis of plant composition, and the acidity generated with N2 fixation amounted to 0.45–0.55 meq H+. (mmol Norg)?1. Without acidity control and in the presence of NH 4 + , specific rates of ion uptake and carboxylate generation were strongly depressed and growth was reduced by 30–35 per cent. Growth of nonnodulatedH. rhamnoides plants ceased at the lower pH limit of 3.1–3.2 and deterioration set in; in the case of N2-fixing plants the nutrient solution pH stabilized at a value of 3.8–3.9 without any apparent adverse effects upon plant performance. The chemical composition of experimental and field-growing plants is being compared and some comments are made on the nitrogen supply characteristics of their natural sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号