首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1498篇
  免费   97篇
  国内免费   66篇
  1661篇
  2023年   13篇
  2022年   21篇
  2021年   32篇
  2020年   35篇
  2019年   47篇
  2018年   36篇
  2017年   33篇
  2016年   40篇
  2015年   37篇
  2014年   65篇
  2013年   93篇
  2012年   50篇
  2011年   61篇
  2010年   44篇
  2009年   49篇
  2008年   60篇
  2007年   58篇
  2006年   72篇
  2005年   71篇
  2004年   61篇
  2003年   46篇
  2002年   52篇
  2001年   37篇
  2000年   46篇
  1999年   35篇
  1998年   46篇
  1997年   29篇
  1996年   34篇
  1995年   23篇
  1994年   34篇
  1993年   33篇
  1992年   17篇
  1991年   24篇
  1990年   28篇
  1989年   14篇
  1988年   19篇
  1987年   13篇
  1986年   15篇
  1985年   19篇
  1984年   18篇
  1983年   9篇
  1982年   17篇
  1981年   15篇
  1980年   11篇
  1979年   8篇
  1978年   11篇
  1976年   6篇
  1975年   4篇
  1974年   4篇
  1971年   4篇
排序方式: 共有1661条查询结果,搜索用时 15 毫秒
81.
I tested whether a region of high female frequencies in the gynodioecious plant, Nemophila menziesii, may be due to hybridization between regionally distributed populations with different corolla colours. I crossed plants in the greenhouse from populations with different corolla colours and found that hybrid crosses yielded higher frequencies of females than within-colour crosses. In the field, I found that populations with high female frequencies had intermediate mean corolla colours and higher variance in corolla colour, two traits suggesting hybridization. Nemophila menziesii has nuclear-cytoplasmic sex inheritance, thus if populations with different corolla colours are fixed for different male-sterile cytoplasms and matching nuclear restorer alleles, hybridization between populations with different corolla colour should yield high frequencies of females. Two populations that are all hermaphroditic in the field segregated females in hybrid crosses suggesting that field populations may contain sex ratio distorters but appear undistorted, a prediction of genomic conflict theory.  相似文献   
82.
Morphological characteristics were studied in cytoplasmic male sterile (CMS) cybrids possessing the tobacco nuclear genome, Hyoscyamus niger plastome and recombinant mitochondria. After backcrosses with tobacco, new flower modifications were found, including: conversions of stamens into branched filamentous structures; alterations in the shape of petals and the corolla limb; and high degrees of reduction in most flower organs. Vegetative alterations (leaf elongation and stem branching) occurred in some cybrids. Results confirmed that a protoplast fusion-based alloplasmic cytoplasm transfer, followed by conventional backcrosses, is a useful tool for generating alternative CMS sources with novel nucleo-cytoplasmic compositions. These alterations in the genetic status were accompanied by modified floral and vegetative phenotypes.  相似文献   
83.
Many functionally hermaphroditic plants have evolved mechanisms to reduce interference between the sex functions and to optimize reproductive output. In addition to physical mechanisms such as the spatial (herkogamy) and temporal (dichogamy) separation of male and female functions, plasticity in sex expression by means of mate-recognition (flexible mating) could be important in plants with variable access to cross-pollen. This applies particularly to clonal plants because of their modular growth form. We experimentally tested for the effects of pollen source and vegetative neighbourhood on instantaneous sex ratio and seed production in the self-compatible clonal marine angiosperm Zostera marina L. To this end, we exposed the (monoecious) flowering shoots to self and cross-pollen and to neighbourhoods of their own and a mix of foreign vegetative shoots. Flowering shoots that had been exposed to cross-pollen showed (1) a significantly lower female/male ratio at peak flowering, evidence for mate-recognition, and (2) a significantly higher seed set by the end of the season. Both effects were independent of the genetic composition of their vegetative neighbourhood. The results suggest that Z. marina maintains a cryptic self-incompatibility system not previously described for angiosperms with sub-aqueous pollination. In Z. marina, and possibly other self-compatible clonal plant species, mate-recognition could be a means of increasing the out-crossing probability for flowering shoots with central positions within their clone.  相似文献   
84.
85.
86.
Abstract.— A simple, deterministic analysis predicts that accumulation of Dobzhansky-Muller incompatibilities by a spatially structured population strongly depends on the number of negative interactions of an allele. If an allele can be incompatible with alleles at only one locus, incompatibilities accumulate linearly with time. In contrast, if an allele can participate in multiple pairwise incompatibilities with alleles at different loci, the expected number of incompatibilities eventually increases quadratically.  相似文献   
87.
Abstract .The genetic incompatibilities that underlie F2 hybrid breakdown and reproductive isolation between al-lopatric populations may be susceptible to environmental interactions. Here we show that epistatic interactions between cytochrome c ( CYC ) alleles and mitochondrial DNA (mtDNA) variation are dramatically influenced by environmental temperature in interpopulation hybrids of the copepod Tigriopus californicus . CYC is a nuclear-encoded gene that functionally interacts with electron transport system (ETS) complexes composed in part of mtDNA-encoded proteins. Previous studies have provided evidence for functional coadaptation between CYC and ETS complex IV (cytochrome c oxidase) and for cytoplasmic effects on the fitness of CYC genotype in copepod hybrids. In this study, selection on CYC genotype is shown to continue into advanced generation hybrids (F2-F8) increasing the likelihood that CYC itself is involved in the interaction (and not a linked factor). Relative viabilities varied markedly between copepods raised in two different temperature/light regimes. These results suggest that both intrinsic coadaptation and extrinsic selection will influence the outcome of natural hybridizations between populations. Furthermore, the results indicate that the fitness of particular hybrid genotypes depends on additional non-mtDNA encoded genes that interact with CYC.  相似文献   
88.
Two closely related field crickets, Gryllus firmus and G. pennsylvanicus, hybridize along an extensive north-south zone in the eastern United States. Crosses between G. firmus males and G. pennsylvanicus females produce viable and fertile F1, but the reciprocal cross consistently fails to produce offspring. Wolbachia, a bacterial parasite of arthropods that causes unidirectional incompatibilities in a variety of insect species, has been suggested as the cause of the observed incompatibility between G. pennsylvanicus and G. firmus. We examine the presence/absence of Wolbachia strains, defined by sequencing the ftsZ gene, in four cricket populations from the north-eastern United States. Most G. firmus individuals are infected (100% in Guilford, Connecticut; 65% in Seaside Park, New Jersey) and > 95% of those infected harbour a single strain of Wolbachia. All individuals in G. pennsylvanicus populations (Ithaca, New York; Sharon, Connecticut) are infected; the majority of individuals carry a second strain of Wolbachia, but a significant fraction carry the same strain found commonly in G. firmus. The presence of an apparently identical Wolbachia strain in crickets of both species means that some crosses between G. pennsylvanicus males and G. firmus females should be compatible. We have no evidence of such compatibility. Furthermore, if Wolbachia infections are responsible for the observed incompatibility between species, then incompatibilities must also exist within G. pennsylvanicus, because this species harbours both Wolbachia strains. Although some single pair crosses within G. pennsylvanicus do fail to produce offspring, the proportion is lower than expected if Wolbachia were responsible. Therefore, Wolbachia is unlikely to be involved in reproductive isolation between the two cricket species.  相似文献   
89.
Normal human somatic cells, unlike cancer cells, stop dividing after a limited number of cell divisions through the process termed cellular senescence or replicative senescence, which functions as a tumor-suppressive mechanism and may be related to organismal aging. By means of the cDNA subtractive hybridization, we identified eight genes upregulated during normal chromosome 3-induced cellular senescence in a human renal cell carcinoma cell line. Among them is the DNCI1 gene encoding an intermediate chain 1 of the cytoplasmic dynein, a microtubule motor that plays a role in chromosome movement and organelle transport. The DNCI1 mRNA was also upregulated during in vitro aging of primary human fibroblasts. In contrast, other components of cytoplasmic dynein showed no significant change in mRNA expression during cellular aging. Cell growth arrest by serum starvation, contact inhibition, or gamma-irradiation did not induce the DNCI1 mRNA, suggesting its specific role in cellular senescence. The DNCI1 gene is on the long arm of chromosome 7 where tumor suppressor genes and a senescence-inducing gene for a group of immortal cell lines (complementation group D) are mapped. This is the first report that links a component of molecular motor complex to cellular senescence, providing a new insight into molecular mechanisms of cellular senescence.  相似文献   
90.
Nguyen H  Brown RC  Lemmon BE 《Protoplasma》2002,219(3-4):210-220
Summary. The micropylar chamber of the mustard Coronopus didymus is a developmental domain distinct from the contiguous central chamber and the more extreme chalazal chamber. Early in syncytial development the micropylar endosperm surrounding the embryo becomes populated with unusual fusiform to multilobed nuclei. These nuclei are sheathed by unique parallel arrays of microtubules that focus at tips of the nuclei and flare to connect with a reticulate network in the common cytoplasm. F-actin does not closely invest the nuclei but instead forms an extensive but separate cytoplasmic reticulum. When the embryo is in the early heart stage, the cytoskeleton of the endosperm undergoes a remarkable transition in preparation for cellularization. Microtubules become reorganized into radial arrays emanating from the nuclei, which themselves become spherical. Radial microtubule systems (RMSs), which replace both the parallel microtubules and the cytoplasmic reticulum, organize the common cytoplasm into evenly spaced nuclear cytoplasmic domains (NCDs). F-actin gradually becomes coaligned with the RMSs. Phragmoplasts are initiated adventitiously at the interfaces of opposing RMSs in the absence of mitosis. Cell plate deposition, which is initiated at multiple sites, results in a network of walls formed more or less simultaneously around the densely packed NCDs. The walls, which are rich in 1–3-β-glucans, join with one another and with the existing walls of both the central cell and embryo to complete cellularization in the micropylar chamber. In the adjacent central chamber where the syncytium is restricted to a thin peripheral layer by the large central vacuole, basic organization of the syncytium into NCDs is followed by alternating cycles of alveolation and periclinal cell division resulting in cellularization. Received July 19, 2001 Accepted October 16, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号