首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15203篇
  免费   852篇
  国内免费   756篇
  2023年   250篇
  2022年   407篇
  2021年   563篇
  2020年   497篇
  2019年   725篇
  2018年   551篇
  2017年   353篇
  2016年   380篇
  2015年   518篇
  2014年   1057篇
  2013年   1149篇
  2012年   787篇
  2011年   961篇
  2010年   790篇
  2009年   662篇
  2008年   814篇
  2007年   760篇
  2006年   613篇
  2005年   581篇
  2004年   514篇
  2003年   400篇
  2002年   370篇
  2001年   200篇
  2000年   205篇
  1999年   211篇
  1998年   197篇
  1997年   160篇
  1996年   175篇
  1995年   175篇
  1994年   172篇
  1993年   122篇
  1992年   138篇
  1991年   107篇
  1990年   113篇
  1989年   91篇
  1988年   71篇
  1987年   65篇
  1986年   69篇
  1985年   92篇
  1984年   113篇
  1983年   97篇
  1982年   107篇
  1981年   63篇
  1980年   75篇
  1979年   61篇
  1978年   47篇
  1977年   38篇
  1976年   28篇
  1974年   25篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 897 毫秒
71.
We isolated a mouse genomic clone that hybridized with small RNA present in the cytoplasm of the brain. The RNA was about 150 nucleotides long. This RNA seemed to be specific to the brain, since it was not found in the liver or kidney. The clone DNA contained a sequence homologous to 82-nucleotide "identifier" core sequence of cDNA clones of rat. The sequence contained a split promoter for RNA polymerase III and was flanked by a 12-nucleotide direct repeat (ATAAATAATTTA).  相似文献   
72.
73.
本研究工作中,建立了一个有效的甜菜坏死黄脉病毒的分离提纯程序,解决了该病毒粒体易于聚集难以提纯的问题,其操作要点是,(1)通过Sepharose 2B柱层析代替超离心,有效地除去一些小分子量核酸杂质;(2)经PEG再次沉淀浓缩后,调整pH至酸牲(pH3.0),使病毒充分悬浮以减少凝聚;(3)在病毒等电点(pH4.8~4.9)条件下,进一步沉淀以纯化病毒。根据病毒提取物的OD260/OD280比值,算出核酸含量约4.5%。核酸电泳出现4条带,分子量分别为:2.25×10~(?),1.8×10~(?),1.05×10~(?),0.75×10~(?)道尔顿。病毒提取物经超速离心出现4个界面,沉淀系数分别为,200.8S,165S,125.8S,100S。说明甜菜坏死黄脉病毒可能是4组分病毒粒体。病毒粒体含一蛋白亚基,分子量约为2.05±0.05×10~4道尔顿,由16种共199个氨基酸组成。  相似文献   
74.
用聚丙烯酰胺凝胶电泳方法分析了流行性感冒病毒重组株京生75-29R2 T1(H3N2)及冷适应株31-广(H3N2)的RNA及多肽。重组株京生75-29R2 T1的HA及M基因系来自流行病毒亲本株/甲/北京/29/75(H3N2),而P_2、NA、NP及NS基因则来自温度敏感母株福R3(H2N2)。流行病毒株甲/穗/03/68(H3N2)在低温条件下经鸡胚尿囊腔传递24代而获得的冷适应疫苗毒株31-广(H3N2)其基因型与野毒株一致。  相似文献   
75.
The cytoplasmic resistivities and membrane breakdown potentials of normal (AA), sickle-cell-trait (AS), and sickle (SS) red blood cells have been measured by the biophysical methodology of resistive pulse spectroscopy over a range of osmolalities. At isotonicity, the average membrane breakdown potentials are virtually identical for the three types of cells occurring at about 1150 V/cm. Average isotonic cytoplasmic resistivities are somewhat higher for the SS cells (166.7±7.49 ohm-cm) compared to the AA (147.6±1.98 ohm-cm) or AS cells (148.7±1.79 ohm-cm). As medium osmolality is varied, the differences in resistive properties become enlarged, especially at very low and very high osmolalities. At high osmolalities, both types of sickle cells show a large increase in internal resistivity compared to the normals; at low osmolality, the SS samples exhibit a distinctly different membrane breakdown characteristic, decreasing in this parameter, whereas the other two groups increase. Of the 15 SS samples tested, three displayed much higher cytoplasmic resistivities at isotonicity: 218.2±5.25 ohm-cm, compared to an average of 153.5±3.46 ohm-cm for the other 12. The relationship between these high resistivities and the subfraction of irreversibly sickled cells in the sample is discussed.  相似文献   
76.
var1 Gene on the mitochondrial genome of Torulopsis glabrata   总被引:5,自引:0,他引:5  
We have cloned and sequenced a region of the Torulopsis glabrata mitochondrial genome homologous to the Saccharomyces cerevisiae var1 gene (var1Sc). An open reading frame that could encode a protein of 339 amino acids was found with 72.7% amino acid and 85.3% nucleotide sequence homology to the S. cerevisiae var1 gene. The T. glabrata gene (var1Tg) is transcribed yielding two stable RNAs, a more abundant 13.5 S RNA and a less abundant 18 S species. We have also identified a candidate for a T. glabrata var1 protein among mitochondrial translation products labeled in isolated mitochondria. The var1Tg gene is even more A + T-rich (93%) than var1Sc (89.6%) and has conserved the strong codon bias of var1Sc. Major differences between the two sequences were found. Significant among these are that no GC clusters are found in var1Tg and the sequences surrounding each of the sites where known polymorphisms exist in var1Sc have deletions at the corresponding sites in var1Tg. These data are discussed with respect to possible origins of these var1 genes and translocation of GC clusters in S. cerevisiae mitochondrial DNA.  相似文献   
77.
The small nuclear RNAs U4 and U6 display extensive sequence complementarity and co-exist in a single ribonucleoprotein particle. We have investigated intermolecular base-pairing between both RNAs by psoralen cross-linking, with emphasis on the native U4/U6 ribonucleoprotein complex. A mixture of small nuclear ribonucleoproteins U1 to U6 from HeLa cells, purified under non-denaturing conditions by immune affinity chromatography with antibodies specific for the trimethylguanosine cap of the small nuclear RNAs was treated with aminomethyltrioxsalen. A psoralen cross-linked U4/U6 RNA complex could be detected in denaturing polyacrylamide gels. Following digestion of the cross-linked U4/U6 RNA complex with ribonuclease T1, two-dimensional diagonal electrophoresis in denaturing polyacrylamide gels was used to isolate cross-linked fragments. These fragments were analysed by chemical sequencing methods and their positions identified within RNAs U4 and U6. Two overlapping fragments of U4 RNA, spanning positions 52 to 65, were cross-linked to one fragment of U6 RNA (positions 51 to 59). These fragments show complementarity over a contiguous stretch of eight nucleotides. From these results, we conclude that in the native U4/U6 ribonucleoprotein particle, both RNAs are base-paired via these complementary regions. The small nuclear RNAs U4 and U6 became cross-linked in the deproteinized U4/U6 RNA complex also, provided that small nuclear ribonucleoproteins were phenolized at 0 degree C. When the phenolization was performed at 65 degrees C, no cross-linking could be detected upon reincubation of the dissociated RNAs at lower temperature. These results indicate that proteins are not required to stabilize the mutual interactions between both RNAs, once they exist. They further suggest, however, that proteins may well be needed for exposing the complementary RNA regions for proper intermolecular base-pairing in the course of the assembly of the U4/U6 RNP complex from isolated RNAs. Our results are discussed also in terms of the different secondary structures that the small nuclear RNAs U4 and U6 may adopt in the U4/U6 ribonucleoprotein particle as opposed to the isolated RNAs.  相似文献   
78.
Summary The nucleotide sequences of the 5S and 5.8S rRNAs of eight strains of tetrahymenine ciliates have been determined. The sequences indicate a clear distinction betweenTetrahymena paravorax and its suggested conspecificT. vorax, but leave the taxonomic distinction betweenT. vorax andT. leucophrys in doubt. The rRNA sequences of sixTetrahymena species and of three other species of the suborder Tetrahymenina have been used to deduce evolutionary schemes in which ancestral rRNA sequences and changes are proposed. These schemes suggest the predominant acceptance of GA and CT transitions in the 5S rDNA during the evolution of the suborder.  相似文献   
79.
Summary The complete nucleotide sequence of the 5S ribosomal RNA from the cyanobacteriumSynechococcus lividus II has been determined. The sequence is 5-UGCCUAGUGUUUAUGGCGCG-GUGGAACCACGCUGAUCCAUCCCGAACUC-AGAGGUGAAACAUCGCAGCGGUGAAGAU-AGUUGGAGGGUAGCCUCCUGCAAAAAUA-GCUCAAUGCUAGGCAOH-3. This 5S RNA has the cyanobacterial- and chloroplast-specific nucleotide insertion between positions 30 and 31 (using the numbering system of the generalized eubacterial 5S RNA) and the chloroplast-specific nucleotide-deletion signature between positions 34 and 39. The 5S RNA ofS. lividus II has 27 base differences compared with the 5S RNA of the related strainS. lividus III. This large difference may reflect an ancient divergence between these two organisms. The electrophoretic mobilities on nondenaturing polyacrylamide gels of renatured 5S RNAs fromS. lividus II,S. lividus III, and spinach chloroplasts are identical, but differ considerably from that ofEscherichia coli 5S RNA. This most likely reflects differences in higher-order structure between the 5S RNA ofE. coli and these cyanobacterial and chloroplast 5S RNAs.  相似文献   
80.
Summary Differences in fertility restoration and mitochondrial nucleic acids permitted division of 25 accessions of S-type male sterile cytoplasm (cms-S) of maize into five subgroups: B/D, CA, LBN, ME, and S(USDA). S cytoplasm itself (USDA cytoplasm) was surprisingly not representative of cms-S, since only two other accessions, TC and I, matched its mitochondrial DNA pattern. CA was the predominant subgroup, containing 18 of the 25 accessions. The B/D and ME subgroups were the most fertile and LBN the most sterile. The exceptional sterility of LBN cytoplasm makes it the most promising of the 25 cms-S accessions for the production of hybrid seed. The most efficient means of quantifying the fertility of the subgroups was analysis of pollen morphology in plants having cms-S cytoplasm and simultaneously being heterozygous for nuclear restorer-of-fertility (Rf) genes. This method took advantage of the gametophytic nature of cms-S restoration. The inbred NY821LERf was found to contain at least two restorer genes for cms-S. Fertility differences were correlated with mitochondrial nucleic acid variation in the LBN, ME, and S (USDA) subgroups.Paper No. 9498 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号