首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10494篇
  免费   430篇
  国内免费   403篇
  2023年   78篇
  2022年   106篇
  2021年   129篇
  2020年   145篇
  2019年   221篇
  2018年   231篇
  2017年   165篇
  2016年   205篇
  2015年   234篇
  2014年   525篇
  2013年   814篇
  2012年   375篇
  2011年   513篇
  2010年   382篇
  2009年   499篇
  2008年   571篇
  2007年   581篇
  2006年   545篇
  2005年   505篇
  2004年   466篇
  2003年   417篇
  2002年   386篇
  2001年   273篇
  2000年   231篇
  1999年   255篇
  1998年   236篇
  1997年   210篇
  1996年   176篇
  1995年   180篇
  1994年   183篇
  1993年   155篇
  1992年   115篇
  1991年   114篇
  1990年   88篇
  1989年   85篇
  1988年   91篇
  1987年   94篇
  1986年   66篇
  1985年   86篇
  1984年   104篇
  1983年   69篇
  1982年   111篇
  1981年   66篇
  1980年   57篇
  1979年   49篇
  1978年   20篇
  1977年   29篇
  1976年   19篇
  1975年   20篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
51.
层粘连蛋白(Laminin,LN)是基膜(basement membrane)中的一种主要大分子糖蛋白。一些研究资料表明肿瘤细胞的浸润转移可能与LN有关。肿瘤细胞与LN的作用可能是通过细胞表面LN受体进行的。本文采用亲和层析法从小鼠Lewis肺癌组织中分离LN受体并对其理化性质进行研究。Lewis肺癌LN受体的表观分子量为70,000,还原后SDS电泳图为一条较宽的条带。氨基酸组成中疏水氨基酸占38%,苏氨酸、絲氨酸、门冬氨酸(包括门冬酰胺)占23.5%,通过硝酸纤维素膜片法用HRP-LN测定受体与LN的结合特性,证明具有配基结合专一性,饱和性及高亲和性(Kd=0.95×10~(-9)mol/L)。  相似文献   
52.
 实验结果表明:(1)大黄素对线粒体NADH氧化酶和琥珀酸氧化酶有很强的抑制作用,其作用随药物浓度的增大而增强,并呈双曲线型,50%抑制浓度分别为2.5μg/ml和11.5μg/ml。而其它四种蒽醌衍生物如大黄酸、芦荟大黄素、大黄素甲醚和大黄酚对这两种氧化酶的抑制作用不明显,药物浓度为60μg/ml,抑制率均低于20%。(2)拮抗实验表明:核黄素、牛血清蛋白(BSA)能拮抗大黄素对线粒体NADH氧化酶的抑制作用。核黄素(3.3×10~(-4)mol/L)和BSA(1.6mg/ml)对大黄素抑制NADH氧化酶的恢复率分别为50.3%和44.6%,且恢复率随拮抗剂浓度的增加而增加。  相似文献   
53.
Usually the toxicity of superoxide is attributed lo its ability to reduce metal ions and subsequently reoxidation of the metal by hydrogen peroxide yields deleterious oxidizing species. As many other nontoxic biological reductants reduce metal compounds, we suggest that part of the mechanism of superoxide toxicity results from its ability to oxidize metal ions bound to biological targets, which subsequently degrade the target via an intramolecular electron Transfer reaction.  相似文献   
54.
Male C57BY/10 mice were chronically fed hexachlorobenzene (HCB) (0.02% of the diet) alone or in combination with a single subcutaneous dose of iron (12.5 mg iron per mouse). After eight weeks the group of mice pretreated with the iron overload was highly sensitized to the porphyrogenic effect of HCB, as shown by liver porphyrin accumulation. A synergistic effect of iron was evident on other parameters too, such as HCB-induced hepatic damage, activation of type O of xanthine oxidase, and decreased activity of copper zinc superoxide dismutase and glutathione peroxidase(s). None of these parameters was affected by iron alone. Iron alone and in association with HCB markedly raised the level of lipid peroxides, the increase in the HCB group being smaller. The combined treatment resulted in a significant reduction of HCB's inductive effects on microsomal heme and cytochromes P-450 and b5 and on the activity of aryl hydrocarbon hydroxylase. The content of nonprotein sulfhydryl groups was reduced to the same extent in mice treated with HCB or HCB plus iron. The results suggest that reactive intermediates such as are formed by lipid peroxidation are not sufficient on their own to create the conditions for uroporphyrinogen decarboxylase impairment, as evident in the group of mice receiving iron overload alone. Conversely, HCB administration induced a specific condition of imbalance in the liver between formation and inactivation of reactive intermediates which was associated with hepatic porphyrin accumulation and was potentiated by concomitant administration of iron.  相似文献   
55.
Chronic treatment of hamsters with estradiol for several months has previously been shown to decrease the specific content of cytochrome P450 in the kidney, a target of hormonal carcinogenesis, but not in liver. The reason for this decrease in metabolic enzyme activity is unknown and has been examined in this investigation. We now report that the decrease in specific content of renal cytochrome P450 by 73% in response to estradiol was not affected by co-treatment with tamoxifen for 1 month. The subcutaneous infusion of 250 μg/day estradiol for 7 days lowered renal cytochrome P450 by 71% from control values and was therefore used for further mechanistic studies. This treatment decreased renal activities of estradiol 2- or 4-hydroxylase by 77 to 80%, of 7-ethoxycoumarin-O-deethylase by 66% of control values, respectively, and completely eliminated aryl hydrocarbon hydroxylase activities, whereas liver enzymes remained unaffected. After 7 days of infusion of estradiol, fluorescent products of lipid peroxidation were more than doubled in hamster kidney but remained unchanged in liver. The possibility of enzyme destruction by binding of estradiol 2,3-quinone to metabolizing enzymes was investigatedin vitro. In the presence of 2-hydroxyestradiol, cumene hydroperoxide, and microsomes, conditions known to favor the oxidation of the steroid to quinone, the binding of catechol estrogen metabolite to microsomal protein increased 60 fold over control values in the absence of cofactor. Purified rat liver cytochrome P450c also oxidized 2-hydroxyestradiol to 2,3-estradiol quinone. The rate of oxidation was linear for the first 2–3 min, but thereafter decreased with time. Under these incubation conditions, irreversible binding of catechol estrogen metabolite to cytochrome P450c increased for the first 2–3 min and then remained at this plateau level. It was concluded that enzyme destruction by a reactive estrogen metabolite or by lipid peroxides may be a major reason for the organ-specific decrease in cytochrome P450 enzymes in kidneys of estrogen-treated hamsters.  相似文献   
56.
57.
Migrating cells degrade pericellular matrices and basement membranes. For these purposes cells produce a number of proteolytic enzymes. Mast cells produce two major proteinases, chymase and tryptase, whose physiological functions are poorly known. In the present study we have analyzed the ability of purified human mast cell tryptase to digest pericellular matrices of human fibroblasts. Isolated matrices of human fibroblasts and fibroblast conditioned medium were treated with tryptase, and alterations in the radiolabeled polypeptides were observed in autoradiograms of sodium dodecyl sulphate polyacrylamide gels. It was found that an M(r) 72,000 protein was digested to an M(r) 62,000 form by human mast cell tryptase while the plasminogen activator inhibitor, PAI-1, was not affected. Cleavage of the M(r) 72,000 protein could be partially inhibited by known inhibitors of tryptase but not by aprotinin, soybean trypsin inhibitor, or EDTA. Fibroblastic cells secreted the M(r) 72,000 protein into their medium and it bound to gelatin as shown by analysis of the medium by affinity chromatography over gelatin-Sepharose. The soluble form of the M(r) 72,000 protein was also susceptible to cleavage by tryptase. Analysis using gelatin containing polyacrylamide gels showed that both the intact M(r) 72,000 and the M(r) 62,000 degraded form of the protein possess gelatinolytic activity after activation by sodium dodecyl sulphate. Immunoblotting analysis of the matrices revealed the cleavage of an immunoreactive protein of M(r) 72,000 indicating that the protein is related to type IV collagenase. Further analysis of the pericellular matrices indicated that the protease sensitive extracellular matrix protein fibronectin was removed from the matrix by tryptase in a dose-dependent manner. Fibronectin was also susceptible to proteolytic degradation by tryptase. The data suggest a role for mast cell tryptase in the degradation of pericellular matrices.  相似文献   
58.
Recent crystallographic studies on the mutant human hemoglobin Ypsilanti (beta 99 Asp-->Tyr) have revealed a previously unknown quaternary structure called "quaternary Y" and suggested that the new structure may represent an important intermediate in the cooperative oxygenation pathway of normal hemoglobin. Here we measure the oxygenation and subunit assembly properties of hemoglobin Ypsilanti and five additional beta 99 mutants (Asp beta 99-->Val, Gly, Asn, Ala, His) to test for consistency between their energetics and those of the intermediate species of normal hemoglobin. Overall regulation of oxygen affinity in hemoglobin Ypsilanti is found to originate entirely from 2.6 kcal of quaternary enhancement, such that the tetramer oxygenation affinity is 85-fold higher than for binding to the dissociated dimers. Equal partitioning of this regulatory energy among the four tetrameric binding steps (0.65 kcal per oxygen) leads to a noncooperative isotherm with extremely high affinity (pmedian = .14 torr). Temperature and pH studies of dimer-tetramer assembly and sulfhydryl reaction kinetics suggest that oxygenation-dependent structural changes in hemoglobin Ypsilanti are small. These properties are quite different from the recently characterized allosteric intermediate, which has two ligands bound on the same side of the alpha 1 beta 2 interface (see ref. 1 for review). The combined results do, however, support the view that quaternary Y may represent the intermediate cooperativity state of normal hemoglobin that binds the last oxygen.  相似文献   
59.
It has been known for several decades that cultured murine cells undergo a defined series of changes, i.e., anin vitro evolution, which includes crisis, spontaneous transformation (immortalization), aneuploidy, and spontaneous neoplastic transformation. These changes have been shown to be caused by thein vitro environment rather than an inherent instability of the murine phenotype or genotype. Serum amine oxidases were recently identified as a predominant cause of crisis. These enzymes generate hydrogen peroxide from polyamine substrates that enter the extracellular milieu. This finding implicates free-radical toxicity as the underlying cause ofin vitro evolution. We propose an oxyradical hypothesis to explain each of the stages ofin vitro evolution and discuss its significance for cytotechnology and long-term cultivation of mammalian cell types.ORR, CDER, FDA Mod-1, Room 2023, 8301 Muirkirk Road, Laurel MD 20708, USA  相似文献   
60.
Summary The SCO1 gene of Saccharomyces cerevisiae encodes a 30 kDa protein which is specifically required for a post-translational step in the accumulation of subunits 1 and 2 of cytochrome c oxidase (COXI and COXII). Antibodies directed against a -Gal::SCO1 fusion protein detect SCO1 in the mitochondrial fraction of yeast cells. The SCO1 protein is an integral membrane protein as shown by its resistance to alkaline extraction and by its solubilization properties upon treatment with detergents. Based on the results obtained by isopycnic sucrose gradient centrifugation and by digitonin treatment of mitochondria, SCO1 is a component of the inner mitochondrial membrane. Membrane localization is mediated by a stretch of 17 hydrophobic amino acids in the amino-terminal region of the protein. A truncated SCO1 derivative lacking this segment, is no longer bound to the membrane and simultaneously loses its biological function. The observation that membrane localization of SCO1 is affected in mitochondria of a rho 0 strain, hints at the possible involvement of mitochondrially coded components in ensuring proper membrane insertion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号