首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13828篇
  免费   573篇
  国内免费   432篇
  2023年   106篇
  2022年   167篇
  2021年   167篇
  2020年   195篇
  2019年   299篇
  2018年   320篇
  2017年   220篇
  2016年   263篇
  2015年   314篇
  2014年   678篇
  2013年   1000篇
  2012年   455篇
  2011年   645篇
  2010年   517篇
  2009年   697篇
  2008年   725篇
  2007年   769篇
  2006年   659篇
  2005年   694篇
  2004年   574篇
  2003年   534篇
  2002年   479篇
  2001年   325篇
  2000年   276篇
  1999年   308篇
  1998年   297篇
  1997年   243篇
  1996年   205篇
  1995年   228篇
  1994年   220篇
  1993年   200篇
  1992年   170篇
  1991年   138篇
  1990年   123篇
  1989年   112篇
  1988年   125篇
  1987年   120篇
  1986年   85篇
  1985年   125篇
  1984年   182篇
  1983年   130篇
  1982年   147篇
  1981年   115篇
  1980年   110篇
  1979年   98篇
  1978年   50篇
  1977年   55篇
  1976年   44篇
  1975年   34篇
  1974年   32篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
81.
A system to characterize mutations arising from in vitro nucleotide misincorporation, which avoids the effects of in vivo mismatch repair on recovery of mutants, was constructed and evaluated. The lacI gene of Escherichia coli was inserted into phage M13 and the M13-lacI recombinant was introduced into a strain of E. coli lacking a resident lacI gene. In this system the function of the M13-bearing lacI gene can be detected by plaque color. Mutants in the 5'-region of the lacI gene (encoding operator-binding domain) are seen as blue plaques when the host strain is grown in the presence of chromogenic substrate, X-gal, in the absence of inducer. The use of uracil-containing single stranded DNA from M13-lacI as template for DNA synthesis avoids the contribution of mismatch repair (in transfection recipients) on the recovery of mutants. To demonstrate the usefulness of the M13-lacI system we produced nucleotide misincorporations by in vitro DNA synthesis in the N-terminal region of the lacI template in the presence of only 3 deoxynucleoside triphosphates (dNTPs). Such mutagenic reactions were conducted in the absence of dATP with 4 different primers and in the absence of dGTP with 2 primers. The type of mutants produced by these reactions were identified through sequencing of DNA from progeny phage after screening for i- (blue plaque) phenotype. Mutations recovered in this system consisted of single and multiple base substitutions in the region of the template near the 3'-terminus of the primer. Nearly all of the mutants induced by '-A' conditions were T----C base substitutions, and those induced by '-G' conditions were C----T transitions. In general, the results were consistent with the spectrum of spontaneous mutants produced in strains deficient in mismatch repair, although some differences were noted. Several new base substitutions within the lacI gene (producing i- phenotype and unobserved by others) were isolated by the procedures described in this paper.  相似文献   
82.
Summary The SCO1 gene of Saccharomyces cerevisiae encodes a 30 kDa protein which is specifically required for a post-translational step in the accumulation of subunits 1 and 2 of cytochrome c oxidase (COXI and COXII). Antibodies directed against a -Gal::SCO1 fusion protein detect SCO1 in the mitochondrial fraction of yeast cells. The SCO1 protein is an integral membrane protein as shown by its resistance to alkaline extraction and by its solubilization properties upon treatment with detergents. Based on the results obtained by isopycnic sucrose gradient centrifugation and by digitonin treatment of mitochondria, SCO1 is a component of the inner mitochondrial membrane. Membrane localization is mediated by a stretch of 17 hydrophobic amino acids in the amino-terminal region of the protein. A truncated SCO1 derivative lacking this segment, is no longer bound to the membrane and simultaneously loses its biological function. The observation that membrane localization of SCO1 is affected in mitochondria of a rho 0 strain, hints at the possible involvement of mitochondrially coded components in ensuring proper membrane insertion.  相似文献   
83.
Amine oxidases have been purified to homogeneity from Pisum sativum, Lens esculenta, Lathyrus sativus and Cicer arietinum. The enzymes have a Mr. of 150 000 and are composed of two identical subunits of 72 000. The amine oxidases showed an isoelectrophoretic heterogeneity.  相似文献   
84.
P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol · (mg chlorophyll)–1 electrons in geranium leaves, 16 nmol · (mg chlorophyll)–1 in sunflower and 22 nmol · (mg chlorophyll)–1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively.Abbreviations Chl chlorophyll - P700 electron donor pigment in the reaction center of photosystem I Cooperation of the Institute of Botany of the University of Würzburg with the Institute of Astrophysics and Atmospheric Physics of the Estonian Academy of Sciences in Tartu was supported by the Deutsche Forschungsgemeinschaft and the Estonian Academy of Sciences. This work was performed within the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   
85.
86.
The general structure of cytochrome oxidase is reviewed and evidence that the enzyme acts as a redox-linked proton pump outlined. The overall H+/e stoichiometry of the pump is discussed and results [Wikström (1989),Nature 338, 293] which suggest that only the final two electrons which reduce the peroxide adduct to water are coupled to protein translocated are considered in terms of the restrictions they place on pump mechanisms. Direct and indirect mechanisms for proton translocation are discussed in the context of evidence for redox-linked conformational changes in the enzyme, the role of subunit III, and the nature of the CuA site.  相似文献   
87.
Pyruvate oxidase from Lactobacillus plantarum is a homotetrameric flavoprotein with strong binding sites for FAD, TPP, and a divalent cation. Treatment with acid ammonium sulfate in the presence of 1.5 M KBr leads to the release of the cofactors, yielding the stable apoenzyme. In the present study, the effects of FAD, TPP, and Mn2+ on the structural properties of the apoenzyme and the reconstitution of the active holoenzyme from its constituents have been investigated. As shown by circular dichroism and fluorescence emission, as well as by Nile red binding, the secondary and tertiary structures of the apoenzyme and the holoenzyme do not exhibit marked differences. The quaternary structure is stabilized significantly in the presence of the cofactors. Size-exclusion high-performance liquid chromatography and analytical ultracentrifugation demonstrate that the holoenzyme retains its tetrameric state down to 20 micrograms/mL, whereas the apoenzyme shows stepwise tetramer-dimer-monomer dissociation, with the monomer as the major component, at a protein concentration of < 20 micrograms/mL. In the presence of divalent cations, the coenzymes FAD and TPP bind to the apoenzyme, forming the inactive binary FAD or TPP complexes. Both FAD and TPP affect the quaternary structure by shifting the equilibrium of association toward the dimer or tetramer. High FAD concentrations exert significant stabilization against urea and heat denaturation, whereas excess TPP has no effect. Reconstitution of the holoenzyme from its components yields full reactivation. The kinetic analysis reveals a compulsory sequential mechanism of cofactor binding and quaternary structure formation, with TPP binding as the first step. The binary TPP complex (in the presence of 1 mM Mn2+/TPP) is characterized by a dimer-tetramer equilibrium transition with an association constant of Ka = 2 x 10(7) M-1. The apoenzyme TPP complex dimer associates with the tetrameric holoenzyme in the presence of 10 microM FAD. This association step obeys second-order kinetics with an association rate constant k = 7.4 x 10(3) M-1 s-1 at 20 degrees C. FAD binding to the tetrameric binary TPP complex is too fast to be resolved by manual mixing.  相似文献   
88.
Point mutations in the gene of pyruvate oxidase from Lactobacillus plantarum, with proline residue 178 changed to serine, serine 188 to asparagine, and alanine 458 to valine, as well as a combination of the three single point mutations, lead to a significant functional stabilization of the protein. The enzyme is a tetrameric flavoprotein with tightly bound cofactors, FAD, TPP, and divalent metal ions. Thus, stabilization may be achieved either at the level of tertiary or quaternary interactions, or by enhanced cofactor binding. In order to discriminate between these alternatives, unfolding, dissociation, and cofactor binding of the mutant proteins were analyzed. The point mutations do not affect the secondary and tertiary structure, as determined by circular dichroism and protein fluorescence. Similarly, the amino acid substitutions neither modulate the enzymatic properties of the mutant proteins nor do they stabilize the structural stability of the apoenzymes. This holds true for both the local and the global structure with unfolding transitions around 2.5 M and 5 M urea, respectively. On the other hand, deactivation of the holoenzyme (by urea or temperature) is significantly decreased. The most important stabilizing effect is caused by the Ala-Val exchange in the C-terminal domain of the molecule. Its contribution is close to the value observed for the triple mutant, which exhibits maximum stability, with a shift in the thermal transition of ca. 10 degrees C. The effects of the point mutations on FAD binding and subunit association are interconnected. Because FAD binding is linked to oligomerization, the stability of the mutant apoenzyme-FAD complexes is increased. Accordingly, mutants with maximum apparent FAD binding exhibit maximum stability. Analysis of the quaternary structure of the mutant enzymes in the absence and in the presence of coenzymes gives clear evidence that both improved ligand binding and subunit interactions contribute to the observed thermal stabilization.  相似文献   
89.
毒黄素对黄嘌呤氧化酶作用的影响   总被引:1,自引:0,他引:1  
利用从椰毒假单胞菌(Pseudomona cocovenenans)中所分离提取的毒黄素(toxoflavin)对黄嘌呤氧化酶(EC.1、2 3、2)作用的动力学试验表明,毒黄素是此酶的非必需激活剂,而且对以次黄嘌呤为底物的反应的激活作用明显高于以黄嘌呤为底物的反应。此激活作用属于部分混合型。这一结果为探寻毒黄素对人体的致毒机理提供了一条重要线索。  相似文献   
90.
When grown with nitrate as terminal electron acceptor both the soluble (periplasm, cytoplasm) and the membrane fraction of Spirillum strain 5175 exhibited high nitrite reductase activity. The nitrite reductase obtained from the soluble fraction was purified 76-fold to electrophoretical homogeneity. The enzyme reduced nitrite to ammonia with a specific activity of 723 mol NO inf2 sup- × (mg protein × min)-1. The molecular mass was 58±1 kDa by SDS-PAGE compared to 59±2 kDa determined by size exclusion chromatography under nondenaturing conditions. The enzyme (as isolated) contained 5.97±0.15 heme c molecules/Mr 58 kDa. The absorption spectrum was typical for c-type cytochrome with maxima at 280, 408, 532 and 610 nm (oxidized) and at 420, 523 and 553 nm (dithionite-reduced). The enzyme (as isolated) exhibited a complex set of high-spin and lowspin ferric heme resonances with g-values at 9.82, 3,85, 3.31, 2.95, 2.30 and 1.49 in agreement with data reported for electron paramagnetic resonance spectra of nitrite reductases from Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli.Abbreviations DNRA dissimilatory nitrate reduction to ammonia - EPR electron paramagnetic resonance - PAGE polyacrylamide gel electrophoresis - NaPi sodium phosphate - SDS sodium dodecylsulfate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号