首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1495篇
  免费   131篇
  国内免费   27篇
  2023年   15篇
  2022年   13篇
  2021年   26篇
  2020年   26篇
  2019年   30篇
  2018年   62篇
  2017年   42篇
  2016年   46篇
  2015年   44篇
  2014年   87篇
  2013年   138篇
  2012年   59篇
  2011年   75篇
  2010年   55篇
  2009年   73篇
  2008年   74篇
  2007年   86篇
  2006年   57篇
  2005年   84篇
  2004年   69篇
  2003年   65篇
  2002年   54篇
  2001年   42篇
  2000年   35篇
  1999年   32篇
  1998年   35篇
  1997年   20篇
  1996年   33篇
  1995年   30篇
  1994年   18篇
  1993年   15篇
  1992年   14篇
  1991年   15篇
  1990年   10篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   13篇
  1983年   7篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   7篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1653条查询结果,搜索用时 46 毫秒
111.
Many neurodegenerative diseases are characterized by ubiquitin-positive protein aggregates or inclusion bodies. Ubiquitin-conjugated proteins are degraded by the 20/26S proteasome, and reduced proteasome peptidase activities in brain homogenates have been reported in pathologic lesions of Parkinson's and Alzheimer's diseases. However, it is unknown whether crude extracts of human brain contain other proteases having peptidase activities. We found a novel protease of molecular weight of approximately 105 kDa in normal human brain, which exhibited trypsin-like (T-L) and chymotrypsin-like (ChT-L) activities (corresponding to 52% and 21% of the total activities in crude extracts) but not peptidyl glutamyl peptide hydrolase activity. Both T-L and ChT-L activities of this protease were partially inhibited by proteasome inhibitors (MG132, lactacystin) and, in contrast to those of the proteasome, also by sodium dodecyl sulfate. A simple method to obtain a brain fraction specific to the 20/26S proteasome was developed. Our human brain data suggest that T-L and ChT-L activity levels of the proteasome reported previously may include those of the 105 kDa protease, an enzyme of as yet unknown biological significance, and that it is necessary to separate the proteasome from this protease to evaluate the actual status of the ubiquitin-proteasome system in neurodegenerative disorders.  相似文献   
112.
Determinants for the recognition of a mitochondrial presequence by the mitochondrial processing peptidase (MPP) have been investigated using mutagenesis and bioinformatics approaches. All plant mitochondrial presequences with a cleavage site that was confirmed by experimental studies can be grouped into three classes. Two major classes contain an arginine residue at position -2 or -3, and the third class does not have any conserved arginines. Sequence logos revealed loosely conserved cleavage motifs for the first two classes but no significant amino acid conservation for the third class. Investigation of processing determinants for a class III precursor, Nicotiana plumbaginifolia F1beta precursor of ATP synthase (pF1beta), was performed using a series of pF1beta presequence mutants and mutant presequence peptides derived from the C-terminal portion of the presequence. Replacement of -2 Gln by Arg inhibited processing, whereas replacement of either the most proximally located -5 Arg or -15 Arg by Leu had only a low inhibitory effect. The C-terminal portion of the pF1beta presequence forms a helix-turn-helix structure. Mutations disturbing or prolonging the helical element upstream of the cleavage site inhibited processing significantly. Structural models of potato MPP and the C-terminal pF1beta presequence peptide were built by homology modelling and empirical conformational energy search methods, respectively. Molecular docking of the pF1beta presequence peptide to the MPP model suggested binding of the peptide to the negatively charged binding cleft formed by the alpha-MPP and beta-MPP subunits in close proximity to the H111XXE114H115X(116-190)E191 proteolytic active site on beta-MPP. Our results show for the first time that the amino acid at the -2 position, even if not an arginine, as well as structural properties of the C-terminal portion of the presequence are important determinants for the processing of a class III precursor by MPP.  相似文献   
113.
Two hairpin-loop domains in cystatin family proteinase inhibitors form an interface surface region that slots into the active site cleft of papain-like cysteine proteinases, and determine binding affinity. The slot region surface architecture of the soybean cysteine proteinase inhibitor (soyacystatin N, scN) was engineered using techniques of in vitro molecular evolution to define residues that facilitate interaction with the proteinase cleft and modulate inhibitor affinity and function. Combinatorial phage display libraries of scN variants that contain mutations in the essential motifs of the first (QVVAG) and second (EW) hairpin-loop regions were constructed. Approximately 1010-1011 phages expressing recombinant scN proteins were subjected to biopanning selection based on binding affinity to immobilized papain. The QVVAG motif in the first hairpin loop was invariant in all functional scN proteins. All selected variants (30) had W79 in the second hairpin-loop motif, but there was diversity for hydrophobic and basic amino acids in residue 78. Kinetic analysis of isolated scN variants identified a novel scN isoform scN(LW) with higher papain affinity than the wild-type molecule. The variant contained an E78L substitution and had a twofold lower Ki (2.1 pM) than parental scN, due to its increased association rate constant (2.6 +/- 0.09 x 107 M-1sec-1). These results define residues in the first and second hairpin-loop regions which are essential for optimal interaction between phytocystatins and papain, a prototypical cysteine proteinase. Furthermore, the isolated variants are a biochemical platform for further integration of mutations to optimize cystatin affinity for specific biological targets.  相似文献   
114.
115.
Tiedemann J  Schlereth A  Müntz K 《Planta》2001,212(5-6):728-738
The temporal and spatial distribution of cysteine proteinases (CPRs) was analyzed immunologically and by in situ hybridization to identify the CPRs involved in the initiation of storage-globulin degradation in embryonic axes and cotyledons of germinating vetch (Vicia sativa L.). At the start of germination several CPRs were found in protein bodies in which they might have been stored in the mature seeds. Cysteine proteinase 1 was predominantly found in organs like the radicle, which first start to grow during germination. Cysteine proteinase 2 was also present at the start of germination but displayed a less-specific histological pattern. Proteinase B was involved in the globulin degradation of vetch cotyledons as well. The histological pattern of CPRs followed the distribution of their corresponding mRNAs. The latter were usually detected earlier than the CPRs but the in situ hybridization signals were histologically not as restricted as the immunosignals. Proteolytic activity started in the radicle of the embryonic axis early during germination. Within 24 h after imbibition it had also spread throughout the whole shoot. At the end of germination, newly synthesized CPRs might have supplemented the early detectable CPRs in the axis. In the cotyledons, only the abaxial epidermis and the procambial strands showed proteinase localization during germination. Both CPR1 and CPR2, as well as the less common proteinase B, might have been present as stored proteinases. Three days after imbibition, proteolytic activity had proceeded from the cotyledonary epidermis towards the vascular strands deeper inside the cotyledons. The histochemical detection of the CPRs was in accordance with the previously described histological pattern of globulin mobilization in germinating vetch [Tiedemann J, et al. (2000)]. A similar link between the distribution of CPRs and globulin degradation was found in germinating seeds of Phaseolus vulgaris L. The coincidence of the histological patterns of globulin breakdown with that of the CPRs indicates that at least CPR1, CPR2 and proteinase B are responsible for bulk globulin mobilization in the seeds of the two legumes. Received: 14 February 2000 / Accepted: 16 August 2000  相似文献   
116.
117.
    
The use of -amino acids as peptidomimetics has emerged in recent years with significant potential in a number of applications. The incorporation of -amino acids has been successful in creating peptidomimetics that not only have potent biological activity, but are also resistant to proteolysis. This article reviews the recent applications of -amino acids in the design of protease and peptidase inhibitors. Given their structural diversity, together with the ease of synthesis and incorporation into peptide sequences using standard solid-phase peptide synthesis techniques, -amino acids have the potential to form a new platform technology for peptidomimetic design and synthesis.  相似文献   
118.
The role of active site residues in fructose 1,6-bisphosphate aldolase is investigated by chemical-modification rescue. An active-site mutation, K107C, is constructed in a background where the four solvent-accessible cysteine residues are converted to alanine. The resulting mutant, tetK107C, when reacted with bromoethylamine (BrEA), shows a 40-fold increase in activity (to 80% that of wild type). Determination of the sites and their degree of modification using electrospray ionization Fourier transform mass spectrometry (ESI-FTMS) is developed, allowing correlation of activity after chemical modification rescue to the degree of modification. The stoichiometry of the reaction is 2.5 aminoethylations per subunit, as measured by ESI-FTMS. Protein modification with a double-labeled mix (1:1) of natural abundance isotope (d(0)-BrEA) and 2-bromoethyl-1,1,2,2-d4-amine hydrobromide (d(4)-BrEA), followed by dialysis and trypsin digestion, shows aminoethylated peptides as "twin peptides" separated by four mass units in ESI-FTMS analysis. Using this detection procedure under nondenaturing (native) conditions, C107 is aminoethylated, whereas the four buried thiols remain unlabeled. Aminoethylation of other residues is observed, and correlates with those peptides containing histidine, methionine, and/or the amino terminus. Quantification of the aminoethylation reaction is achieved by labeling with nondeuterated d(0)-BrEA under denaturing conditions following double labeling under native conditions. In addition to complete labeling all five thiols, the intensity of the d(0)-BrEA peak for C107 containing peptides increases, and the change in the d(0)/d(4) ratio between native and denaturing conditions shows 82 +/- 4.5% aminoethylation at C107. This correlation of modification with the recovered activity, indicates that gamma-thia-lysine replaces lysine in the catalytic mechanism. Kinetic constants measured for the rescued K107C mutant enzyme with the substrates fructose 1-phosphate and fructose 1,6-bisphosphate are consistent with the role of the positively charged lysine binding to the C6-phosphate. ESI-FTMS, combined with this double-labeling procedure, allows precise identification of sites and measurement of degree of protein modification.  相似文献   
119.
Most mitochondrial matrix space proteins are synthesized as a precursor protein, and the N-terminal extension of amino acids that served as the leader sequence is removed after import by the action of a metalloprotease called mitochondrial processing peptidase (MPP). The crystal structure of MPP has been solved very recently, and it has been shown that synthetic leader peptides bind with MPP in an extended conformation. However, it is not known how MPP recognizes hundreds of leader peptides with different primary and secondary structures or when during import the leader is removed. Here we took advantage of the fact that the structure of the leader from rat liver aldehyde dehydrogenase has been determined by 2D-NMR to possess two helical portions separated by a three amino acid (RGP) linker. When the linker was deleted, the leader formed one long continuous helix that can target a protein to the matrix space but is not removed by the action of MPP. Repeats of two and three leaders were fused to the precursor protein to determine the stage of import at which processing occurs, if MPP could function as an endo peptidase, and if it would process if the cleavage site was part of a helix. Native or linker deleted constructs were used. Import into isolated yeast mitochondria or processing with recombinantly expressed MPP was performed. It was concluded that processing did not occur as the precursor was just entering the matrix space, but most likely coincided with the folding of the protein. Further, finding that hydrolysis could not take place if the processing site was part of a stable helix is consistent with the crystal structure of MPP. Lastly, it was found that MPP could function at sites as far as 108 residues from the N terminus of the precursor protein, but its ability to process decreases exponentially as the distance increases.  相似文献   
120.
In order to understand the thermodynamic and kinetic basis of the intrinsic stability of proteins from hyperthermophiles, the folding-unfolding reactions of cysteine-free pyrrolidone carboxyl peptidase (Cys142/188Ser) (PCP-0SH) from Pyrococcus furiosus were examined using circular dichroism (CD) and differential scanning calorimetry (DSC) at pH 2.3, where PCP-0SH exists in monomeric form. DSC showed a strong dependence of the shape and position of the unfolding profiles on the scan rate, suggesting the stability of PCP-0SH under kinetic control. On DSC timescales, even at a scan rate of 1 deg. C/hour, heat denaturation of PCP-0SH was non-equilibrium. However, over a long period of incubation of the heat-denatured PCP-0SH at pre-transition temperatures, it refolded completely, indicating reversibility with very slow relaxation kinetics. The rates of refolding of the heat-denatured PCP-0SH determined from the time-resolved DSC and CD spectroscopic progress curves were found to be similar within experimental error, confirming the mechanism of refolding to be a two-state process. The equilibrium established with a relaxation time of 5080 seconds (at t(m)=46.5 degrees C), which is unusually higher than the relaxation times observed for mesophilic and hyperthermophilic proteins. The long relaxation time may lead to the apparent irreversibility of an unfolding process occurring on the DSC experiment timescale. The refolding rate (9.8 x 10(-5) s(-1)) peaked near the t(m) (=46.5 degrees C), whereas the stability profile reached maxima (11.8 kJ mol(-1)) at 17 degrees C. The results clearly indicate the unusual mode of protein destabilization via a drastic decrease in the rate of folding at low pH and still maintaining a high activation energy barrier (284 kJ mol(-1)) for unfolding, which provides an effective kinetic advantage to unusually stable proteins from hyperthermophiles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号