首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   14篇
  国内免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   4篇
  2017年   9篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   17篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   11篇
  2008年   2篇
  2007年   4篇
  2006年   7篇
  2005年   8篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   7篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
排序方式: 共有144条查询结果,搜索用时 343 毫秒
81.
A cystatin α-sensitive cysteine proteinase that plays an important role in the lysosomal inactivation and degradation of L-lactate dehydrogenase (LDH) was purified by column chromatography from an ammonium sulfate precipitate of lysosome extract prepared from rat livers. It was eluted with marked delay from cathepsins B and H in a Sephacryl S-200 column by its specific interaction with the gel, and then effectively separated from cathepsins B and H and other proteins. It was eluted with 0.5 M NaCl after washing with 0.2 M NaCl in a CM-Sephadex column, indicating that it showed the same elution behavior as cathepsin L from the CM-Sephadex column. It had activity to hydrolyze z-Phe-Arg-NH-Mec, a synthetic substrate for cysteine proteinases, including cathepsins B and L. The N-terminal sequences of the final preparation of LDH-inactivating enzyme were identical with those of rat cathepsin L. Inactivation and degradation of LDH by the final preparation were observed and effectively inhibited by a low level of cystatin α as well as a general cysteine proteinase inhibitor, leupeptin or (L-3-trans-carboxyoxirane-2-carbonyl)-L-leucine (3-methylbutyl)amide (E-64-c). From these results, it is concluded that cathepsin L plays a critical role in the lysosomal degradation of native LDH.  相似文献   
82.
目的:制备高效价、高特异性的抗人胱抑素 C 鸡卵黄 IgY 抗体,并对其基本特性进行分析和鉴定.方法:以人胱抑素 C 为抗免疫产蛋的罗曼鸡,采用水稀释-盐析法提取及纯化 IgY 抗体,采用蛋白质定量、SDS-PAGE、West?ern 印迹和 ELISA 法对 IgY 抗体进行分析和鉴定.结果:免疫后14 d 即可从鸡冠血中检测出抗胱抑素 C 的特异性抗体,抗体效价在28 d 达最高峰(1∶32000),并可维持2个月以上;收集高效价时的免疫鸡蛋,制备鸡卵黄抗体 IgY;还性 SDS-PAGE 显示抗体 IgY 为相对分子质量分别为65×103和21×103的2条带,抗体纯度可达92%,得率为每个鸡蛋36.5 mg,抗体检出敏感度为15.63 ng/mL;Western 印迹证明该抗体具有高度特异性.结论:制备了抗胱抑素 C 的高效价、高特异性 IgY 抗体.  相似文献   
83.
Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-α) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-α exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-α exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-α exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-α exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-α exposure, which might influence MSC differentiation stage and capacity.  相似文献   
84.
Abstract

Drug protein interactions have gained considerable attention over the past many years. In the current communication the association of muscle cystatin (MC) with anti-rheumatic drugs methotrexate and dexamethasone was studied by thiol proteinase inhibitor assay, ultra violet (UV) absorption, fluorescence spectroscopy, and fluorescence transform infra-red spectroscopy (FTIR). A static pattern of quenching was noticed between muscle cystatin and methotrexate (MTX). Binding constant (Ka) of methotrexate to muscle cystatin was found to be 1?×?10?7 M?1 and the stoichiometry of binding was calculated to be one. Fluorescence measurement of the emission quenching reveals that the quenching process of cystatin by dexamethasone (DXN) was also static. The stoichiometry of binding and binding constant was also obtained. Additional evidence regarding MTX–MC and DXN–MC was obtained from UV spectroscopy and FTIR spectroscopic results. Such spectroscopic studies would help in modelling new candidate drugs for rheumatoid arthritis based on their cystatin binding profile.

Communicated by Ramaswamy H. Sarma  相似文献   
85.
86.
Cystatins essentially regulate lysosomal cysteine protease besides affecting several physiological processes. In the present study, denaturation of a high molecular weight cystatin (Mr 66.4 kDa) purified from goat lung (GLC-I) has been studied by monitoring its inhibitory activity, intrinsic fluorescence, circular dichroism (CD), and binding of ANS. It was found that increasing concentration of GdnHCl significantly enhances the inactivation and unfolding of the purified inhibitor (GLC-I) with complete loss of inhibitory activity at 4 M GdnHCl. Denaturation of GLC-I in the presence of GdnHCl is accompanied by red shift (15 nm) of the emission maximum as shown by intrinsic fluorescence. The inhibitory activity of GLC-I was increased by 1.5 fold at 2 M urea; however, it decreased with further increased of the urea concentration. Intrinsic fluorescence studies of GLC-I in the presence of 0–3 M urea shows blue shift of 5 nm, suggesting stabilization of the inhibitor followed by 5 nm red shift at higher concentration. ANS binding studies in the presence of urea indicate significant changes in the tertiary structure of the inhibitor. Thus, our result shows denaturation profile of GLC-I following simple two state transitions in the presence of GdnHCl while it proceeds through an intermediate state in the presence of urea.  相似文献   
87.
Cystatin C originally identified as a cysteine proteases inhibitor has a broad spectrum of biological roles ranging from inhibition of extracellular cysteine protease activities, bone resorption, and modulation of inflammatory responses to stimulation of fibroblasts proliferation. There is an increasing number of evidence to suggest that human cystatin C (hCC) might play a protective role in the pathophysiology of sporadic Alzheimer's disease. In vivo and in vitro results well documented the association of hCC with Aβ and the hCC‐induced inhibition of Aβ fibril formation. In our earlier work, using a combination of selective proteolytic methods and MS spectroscopy, C‐terminal fragment hCC(101‐117) was identified as the Aβ‐binding region. The fragment of Aβ peptide responsible for the complex formation with hCC was found in the middle, highly hydrophobic part, Aβ(17‐24). Structures and affinities of both Aβ and hCC binding sites were characterized by the enzyme‐linked immunosorbent assay‐like assay, by surface plasmon resonance, and by nano‐ESI‐FTICR MS of the hCC–Aβbinding peptide complexes. In the in vitro inhibition studies, the binding cystatin sequence, hCC(101‐117), revealed the highest relative inhibitory effect toward Aβ‐fibril formation. Herein, we present further studies on molecular details of the hCC‐Aβ complex. With Ala substitution, affinity experiments, and enzyme‐linked immunosorbent assay‐like assays for the Aβ‐binding fragment, hCC(101‐117), and its variants, the importance of individual amino acid residues for the protein interaction was evaluated. The results were analyzed using hCC(101‐117) nuclear magnetic resonance structural data with molecular dynamics calculations and molecular modeling of the complexes. The results point to conformational requirements and special importance of some amino acid residues for the protein interaction. The obtained results might be helpful for the design of low molecular compounds modulating the biological role of both proteins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
88.
Objective and methods: Test the ability of serum uromodulin concentrations 1–3 months after renal transplantation to predict all-cause mortality (ACM) and graft loss (GL) in 91 patients.

Results: uromodulin predicted GL equivalently to the other markers studied: the risk for GL was reduced by 0.21 per one standard deviation (SD) increase (cystatin C: hazard ratio [HR] 4.57, creatinine: HR 4.53, blood-urea-nitrogen [BUN]: HR 2.50, estimated glomerular filtration rate [eGFR]: HR 0.10). In receiver-operating-characteristic (ROC) analysis, uromodulin predicted GL with an area-under-the curve of 0.782 at an optimal cut-off (OCO) of 24.0?ng/ml with a sensitivity of 90.0% and a specificity of 70.2%.

Conclusion: Serum uromodulin predicted GL equivalently compared to conventional biomarkers of glomerular filtration.  相似文献   

89.
90.
Cystatin B is an anti-protease implicated in myoclonus epilepsy, a degenerative disease of the central nervous system. In vitro, cystatin B interacts with and inhibits proteases of the cathepsin family. Confocal microscopy analysis of the subcellular localization of cystatin B and cathepsin B shows that, in vivo, the two proteins are concentrated in different cell compartments. In fact, cystatin B is found mainly in the nucleus of proliferating cells and both in the nucleus and in the cytoplasm of differentiated cells, while cathepsin B, in either case, is essentially cytoplasmic. However, colocalization of cystatin and cathepsin B is observed in the isolated cell matrix and in the nuclear scaffold of differentiated neuroblastoma cells but not of proliferating cells. This suggests that at least a fraction of cystatin B is bound to the protease in differentiated cells. The electron microscopy analysis of the cell matrix confirms the observation made with confocal microscopy. The cellular activity of cathepsin B was analyzed with a fluorogenic cytochemical assay. A fluorescent signal is observed in the cytoplasm of proliferating cells but is undetectable in the cytoplasm of differentiated cells, suggesting that cathepsin B is active mainly during the cell cycle. This result is consistent with the separate compartimentalization of cystatin B and cathepsin B that we have observed in growing cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号