首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   15篇
  国内免费   4篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   7篇
  2018年   6篇
  2017年   8篇
  2016年   2篇
  2015年   6篇
  2014年   10篇
  2013年   12篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   9篇
  2007年   9篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
排序方式: 共有180条查询结果,搜索用时 937 毫秒
51.
Carbonaceous materials are attractive supercapacitor electrode materials due to their high electronic conductivity, large specific surface area, and low cost. Here, a unique hierarchical porous N,O,S‐enriched carbon foam (KNOSC) with high level of structural complexity for supercapacitors is reported. It is fabricated via a combination of a soft‐template method, freeze‐drying, and chemical etching. The carbon foam is a macroporous structure containing a network of mesoporous channels filled with micropores. It has an extremely large specific surface area of 2685 m2 g?1. The pore engineered carbon structure is also uniformly doped with N, O, and S. The KNOSC electrode achieves an outstanding capacitance of 402.5 F g?1 at 1 A g?1 and superior rate capability of 308.5 F g?1 at 100 A g?1. The KNOSC exhibits a Bode frequency at the phase angle of ?45° of 18.5 Hz, which corresponds to a time constant of 0.054 s only. A symmetric supercapacitor device using KNOSC as electrodes can be charged/discharged within 1.52 s to deliver a specific energy density of 15.2 W h kg?1 at a power density of 36 kW kg?1. These results suggest that the pore and heteroatom engineered structures are promising electrode materials for ultrafast charging.  相似文献   
52.
Fenestrae are open transmembrane pores that are a structural hallmark of healthy liver sinusoidal endothelial cells (LSECs). Their key role is the transport of solutes and macromolecular complexes between the sinusoidal lumen and the space of Disse. To date, the biochemical nature of the cytoskeleton elements that surround the fenestrae and sieve plates in LSECs remain largely elusive. Herein, we took advantage of the latest developments in atomic force imaging and super‐resolution fluorescence nanoscopy to define the organization of the supramolecular complex(es) that surround the fenestrae. Our data revealed that spectrin, together with actin, lines the inner cell membrane and provided direct structural support to the membrane‐bound pores. We conclusively demonstrated that diamide and iodoacetic acid (IAA) affect fenestrae number by destabilizing the LSEC actin‐spectrin scaffold. Furthermore, IAA induces rapid and repeatable switching between the open vs closed state of the fenestrae, indicating that the spectrin‐actin complex could play an important role in controlling the pore number. Our results suggest that spectrin functions as a key regulator in the structural preservation of the fenestrae, and as such, it might serve as a molecular target for altering transendothelial permeability.  相似文献   
53.
Bongkrekic acid (BKA) inhibits adenine nucleotide translocator (ANT) and suppresses ADP/ATP exchange in the mitochondrial inner membrane. Previously, we demonstrated that BKA exhibited cytotoxic effects on 4T1 tumor cells, depending on the cell number in the culture, but not on NIH3T3 cells. However, the cause of this differential sensitivity was unelucidated. Here we demonstrate that BKA reduced the O2 consumption in both cell lines and increased the mitochondrial membrane potential, thereby facilitating glucose consumption. BKA reduced cellular ATP in 4T1 cells in a dose-dependent manner but not in NIH3T3 cells. The cellular ATP of 4T1 cells was decreased with a reduced glucose concentration in the media, but that of NIH3T3 cells remained constant. We also demonstrated that BKA-induced cell death in both cell lines in low glucose media; however, the susceptibility to the reduced glucose concentration was slightly higher in 4T1 cells, which may be attributed to the difference in the dependency on glycolysis as their energy source. These results indicate that 4T1 tumor cells rely heavily on glucose for energy production. Our data demonstrate that BKA disturbs ATP production in mitochondria and increases the susceptibility to a low glucose condition.  相似文献   
54.
Semiarid woodlands and savannas are globally important biomes that provide ecosystem goods and services such as habitat for biota and sinks for carbon, support millions of people that rely primarily on pastoralism, and supply livelihoods for about a third of the global human population. Savannas, however, are prone to degradation by overgrazing, and encroachment by woody plants, reducing their capacity to produce forage that pastoral enterprises depend on. We examined the impacts of livestock grazing and woody encroachment on soil hydrological processes, hypothesizing that heavy grazing by livestock would reduce hydrological function, whereas woody plants would increase hydrological function, therefore, partially offsetting any negative effects of overgrazing by livestock. Understanding the major drivers of soil hydrology in savanna ecosystems is important because water is a critical, yet limited resource in savannas. We found that livestock grazing reduced the early (sorptivity) and late (steady-state infiltration) stages of infiltration under both ponding and tension, and attributed this to a reduction in porosity caused by livestock trampling. Steady-state infiltration and sorptivity under ponding were greater under the canopies of woody shrubs than in open areas, partly compensating for any negative effect of grazing. Structural equation modeling revealed a direct positive effect of shrub height on hydrological functions, and an indirect effect via increases in litter cover. Our results suggest that woody plants can play important roles in driving hydrological function in savannas, counteracting the suppressive effect of livestock overgrazing on infiltration processes. Management strategies in semiarid savannas should aim to reduce trampling by livestock and retain large woody plants in order to maintain hydrological function.  相似文献   
55.
The recently proposed mid-density scheme [Liu Z, Herrera L, Nguyen VT, Do DD, Nicholson D. A Monte Carlo scheme based on mid-density in a hysteresis loop to determine equilibrium phase transition. Mol Simul. 2011; 37(11):932–939, Liu Z, Do DD, Nicholson D. A thermodynamic study of the mid-density scheme to determine the equilibrium phase transition in cylindrical pores. Mol Simul. 2012; 38(3):189–199] is tested against a method 2V-NVT (similar to the well-established gauge cell method) and the canonical ensemble (CE) method, using argon adsorption at 87 K in graphitic slit pores of infinite and finite length. In infinitely long pores, the equilibrium transition is vertical that is expected for an infinite system to have a first-order transition and this vertical transition was found to lie at the middle of the hysteresis loop and satisfies the well-known Maxwell rule of equal area. For pores of finite length, the equilibrium transitions are steep and are close to, but not exactly identical to, the desorption branch. This lends support to the conventional view that the desorption branch is nearest to equilibrium, although both adsorption and desorption branches are strictly speaking metastable; a view proposed originally by Everett [Everett DH. Capillary condensation and adsorption hysteresis. Berichte Der Bunsen-Gesellschaft [Phys Chem Chem Phys]. 1975; 79(9):732–734]. As a consequence, the Maxwell rule of equal area does not apply to finite systems. As the widely accepted CE and gauge cell methods do not falsify the mid-density scheme, this study lends strong support to the validity of this technique for the study of equilibria.  相似文献   
56.
The particle and fluid dynamics in a rotating cylindrical filtration (RCF) system used for animal cell retention in perfusion processes was studied. A validated CFD model was used and the results gave numerical evidence of phenomena that had been earlier claimed, but not proven for this kind of application under turbulent and high mesh permeability conditions, such as bidirectional radial exchange flow (EF) through the filter mesh and particle (cells) lateral migration. Taylor vortices were shown to cause EF 10‐100 times higher than perfusion flow, indicating that EF is the main drag source, at least in early stages of RCF operation. Particle lateral migration caused a cell concentration reduction (CCR) near the filter surface of approximately 10%, contributing significantly to cell separation in RCF systems and giving evidence that the mesh sieving effect is not the sole phenomenon underlying cell retention in RCF systems. Filter rotation rate was shown to significantly affect both EF and CCR. A higher separation efficiency (measured experimentally at 2,000‐L bioreactor scale) and an enhanced CCR (predicted by the numerical simulations) were found for the same rotation rate range, indicating that there is an optimal operational space with practical consequences on RCF performance. Experimental data of a large‐scale perfusion run employing the simulated RCF showed high cell viabilities for over 100 days, which is probably related to the fact that the computed shear stress level in the system was shown to be relatively low (below 20 Pa under all tested conditions). © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1093–1102, 2014  相似文献   
57.
Tau, a family of microtubule-associated proteins (MAPs), stabilizes microtubules (MTs) and regulates their dynamics. Tau isoforms regulate MT dynamic instability differently: 3-repeat tau is less effective than 4-repeat tau at suppressing the disassembly of MTs. Here, we report another tau-isoform-dependent phenomenon, revealed by fluorescence recovery after photobleaching measurements on a BODIPY-conjugated taxol bound to MTs. Saturating levels of recombinant full-length 3-repeat and 4-repeat tau both cause taxol mobility to be remarkably sensitive to taxol concentration. However, 3-repeat tau induces 2.5-fold faster recovery (∼450 s) at low taxol concentrations (∼100 nM) than 4-repeat tau (∼1000 s), indicating that 3-repeat tau decreases the probability of taxol rebinding to its site in the MT lumen. Finding no tau-induced change in the MT-binding affinity of taxol, we conclude that 3-repeat tau either competes for the taxol binding site with an affinity of ∼1 μM or alters the MT structure so as to facilitate the passage of taxol through pores in the MT wall.  相似文献   
58.
The external anatomy of the ovipositor has generally been overlooked as a source of informative characters in systematic studies of laniatorean harvestmen. In this study, we used scanning electron microscopy to examine the ovipositors of nine species representing the families Manaosbiidae (five species) and Nomoclastidae (four species). Similar to the ovipositor morphology of many gonyleptoidean families, the distal tips of the ovipositors of these harvestmen have four external lobes, with the margins most commonly adorned with 10 large peripheral setae. In manaosbiid and nomoclastid species, these peripheral setae have undivided bases, striated shafts and undivided distal tips. There are typically three setae on each anterior lobe and two setae on each posterior lobe. The medial setae on both anterior and posterior lobes insert into sockets that are slightly more dorsal. We observed small, surface denticles, usually associated with a pore, on the external surface of the lobes. There was interspecific and intraspecific variation in the number and shape of these surface denticles. The association of pores with denticles on the ovipositor appears to be a feature common to not only both families but is also a trait that has not been observed on ovipositors in other families of laniatorean harvestmen.  相似文献   
59.
Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO2 concentrations (eCO2) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long‐term experiment (7 yr at the time of sampling) in which a C4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO2. Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra‐aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N‐dependent changes as atmospheric CO2 concentrations rise, having global‐scale implications for water balance, carbon storage, and related rhizosphere functions.  相似文献   
60.
通过硫酸铵分级沉淀、CM 5 2阳离子交换层析、蓝胶亲和层析和FPLCMonoS阳离子交换层析 ,从丝瓜籽抽提液中分离到一种多肽luffinP1。经MALDI TOFMS测得其分子量为 5 2 2 6 .5。氨基酸序列测定及同源性分析发现 ,luffinP1的N端 11个氨基酸序列与丝瓜籽中的一种 6 .5K富含Arg Glu的多肽AGRP的部分序列相同 ,并与南瓜籽中一种胰蛋白酶抑制剂C2肽具有很高的同源性。体外分析表明 ,luffinP1同时具有两种生物活性 :(1)对兔网织红细胞裂解液系统蛋白质生物合成有较强的抑制作用 ,IC50 为 0 .6nmol L ;(2 )具有明显的胰蛋白酶抑制活性 ,IC50 为 2 2 μmol L。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号